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FORNULATION.OF MANAGEMENT SCIENCE MODELS FOR
SELECTED PROBLEM OF COLLEGE ADMINISTRATION

by:

KARL A. FOX
FRANCIS P. MCCAMLEY

YAKIR PLESSNER

During the past few years there has been a rapid development of

the field called mana ement science not to be confused with the older

tradition of "scientific management" in tbe sense of time and motion

studies, etc.). Managementscience has made major contributions to

the solution of problems involving the optimal allocation of limited

resources, decision-making under conditions of uncertainty, and decision

processes involving two or more stages (as in an administrative hierarchy).

The central concepts involved can be stated in concise mathematical terns

and can be extended to a very wide range of applied fields in addition

to those in which successes have already been scored (business management,

military operations research, traffic engineering, control systems en-

gineering, etc.).

College administrators must deal with problems of allocating limited

resources and must continually make decisions in the face of uncertainty

as to enrollments, losses of faculty, future budget limitations, develop-

ments in secondary schools and changing job opportunities for college

graduates. The specific objectives of this project are:

1. To select a number of problems that are faced continuously

by department chairma, deans and college presidents and are

of great importance to the efficiency with which our ed-

ucational resources are used;

ao. TileoZMVAL



2. To state the essential features of these problems in

mathematical form and identify their mathematical

structures with management science models used in

other fields; and

3. To apply the appropriate solution methods to synthetic

or illustrative models of academic departments, divisions,

or small colleges.

I. The Problems Considered

A. General Statement

After twelve years as head of a large academic department and after

many, many conversations with faculty members, chairmen and deans in

various colleges and universities, it appeap to the principal investi-

gator that academic administration is making little use of modern

scientific approaches o resource allocation and optimal decision

1/
processes. Few problems are specified with sufficient clarity and

rigor, and with sufficient attention to the definition of the relevant

variables, that two objective observers could take the problem as de-

scribed and arrive at the same quantitative decision.

This is not to say that all aspects of academic life are or should

be subject to quantification. A good college faculty includes proud,

sensitive and creative people. However, faculties, and their chairmen,

1/ This is something quite different from automation and computerization
of recording, accounting and reporting activities, as will be seen
shortly.

1,
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deans and presidents, must. make many decisions which affect in quantita-

tive ways the "inputs" and "outputs" of the educational processes in

which they are engaged.

Almost without exception, college presidents are keenly aware of

pressures from deans and faculty members to do more and better things--

things which cannot be done with the resources available. To an

economist, this involves the classical economic problem of allocating

limited resources among competing uses.

Economists often view decision makers as using price systems to

aid in the management of their enterprises. These concepts are seldom

explicitly used by educational administrators. The inputs of educational

processes are measured and priced although few colleges, to the best of

our knowledge, measure or price them in ways that aid educational decision-

making. The measurement and pricing procedures used are more conimonly

designed only to insure that the college stays within its budget for

the year. Recent developments in management science have emphasized the

concept of a "shadow price" which does not necessarily equal the market

price of a resource but which shows the amount by which the value of out-

put of an enterprise could be increased if one additional unit of a

particular scarce resource were made available.

Some of the "outputs" of colleges are not explicitly priced by

college faculty members and administrators. Some of them do have value,

however, in terms of the greater earning power and leadership capabilities

of college graduates. In recent years, T. W. Schultz (18), Gary Becker ( 2),

and others have made progress in quantifying the vocational value as

- 3 -
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contribution to career income resulting from a college education--thts

is, in a sense, the value of one educational output to the student

who receives the education.

The value of a particular output may be estimated at different

levels by different faculty members or administrators. However, the

assignment of illustrative prices to the various outputs at least

challenges others to state their own judgment as to relative prices and

their reasons for them. It may turn out that some decisions are not

sensitive to the differences between alternative sets of prices which

two different outside observers as expert panels would regard as

reasonable.

This project has not been concerned with improving estimates of

prices of educational inputs and outputs. We have drawn on other re-

search both here and elsewhere for estimated or illustrative prices.

We are concerned with the procedures for making reproducible decisions

which are in soma sense optimal given the estimated or measured prices

of inputs and outputs and quantitatively specified budget personnel

and space constraints. Knowledge that procedures exist for making good'

or even optimal use of such data may do more than anything else to

stimulate improvements in the accuracy and relevance of the data col-

lected in the future.

No one knows by how much the efficiency of college education in the

United States could be increased. Given a set of institutions which have

prided themselves on the intangibility of their product, research focused

upon efficient resource allocation and improved decision processes with

respect to quantitative aspects of college administration Should have

- 4



an ultimate payoff running into many hundreds of millions of dollars.

This is not, of course, the patented payoff of any one project but the

cumulative payoff of an "optimizing" approach and attitude by faculty

members and administrators becoming gradually more prevalent over a period

of years.

B. References to Related Work

Some progress.has been made in tha general area of the econamics of

education and a good deal of progress has been made in the tools needed

for making optimal decisions. Becker (2 ) T. W. Schultz (18) and others

have attempted to estimate the value to the holders and to society of

various types of education. Adelman ( 1), Bowles ( 4), Stone (19), and

e* others have formulated planning models of several national educational

systems. Dantzig and Wolfe ( 8) ,have developed an algorithm which under

some circumstances can be used to compute optimum solutions to decision-

making problems of large organizations. Kornai and Liptak (13) have dealt

with the same problem and have shown the analogy between decentralized

decision-making and certain matrix games. Day ( 9) has made extensive use

of a recursive programming model in which the levels at which activities

can be carried on in Year t are dependent upon the levels attained in the

preceding year.

Iowa State University economists have also been active in this area.

Winkelmann (20) has constructed a model for allocating faculty members

among various teaching and research assignments. Plessner, Fox and Sanyal (17)

have constructed for an individual department a dynamic programming policy

model which determines, given the size and characteristics of the initial

faculty, initial enrollments, and input and output priees, the optimal

= 5 -



admissions andoutput pattern for a four-year planning period. MCamley (B)

has shown that the results of Kornai and Liptak (B) and Dantzig and

Wolfe (8) may be combined to provide dhe basis for decision-making pro-

cedures that could be adoptnd by educational institutions. Fox and

Sengupta (10) have reviewed much of the extant literature dealing with

educational planning and have indicated some of the features that should

be included in models of educational departments.

C. Specific Models Treated in This Report

For each of a number of major types of problems of college administration

our approach includes (1) a logical formulation, (2) a mathematical form-

ulation based on management science concepts, (3) the construction of a

non-trivial example, based on academic organization and staffing patterns,

teaching loads, salary levels, and the like which are within the range

of current academic experience in the United States and (+) the com-

pletion of one or more sequences of calculations showlag how management

science techniques wouldimprove the results of resource allocation or

decision-making process over specified conventional or traditional pro-

cedures.

In our project proposal we listed "some of the problems that will most

likely be conceptualized" as:

a. The use of a linear programming model to allocate a stipu-

lated faculty among courses (and between courses, research,

and administrative activities) for a single year, given pro-

jected enrollments and desire for courses on the part of students;

b. The use of a recursive programming model to follow successive

decisions of a department chairman or faculty over a period of years;

- 6
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c. The modeling of a two-level decision-making process,

d. Estimating the relative contributions of different de-

cigion makers to an allocation procedure, and

e. The use of stochastic programming to estimate the value of

certain types of information.

As it turned out we went quite deeply into some vrohlems and less

deeply or not at all into others. The total amount of effort put into

the project and directly-related research far exceeded the amount pro-

2/
vided by the project contract ($7,500).

In this report we will emphasize three approaches or models which

should prove to be useful aids to resource allocation and other major

decision processes in educational institutixas.

2/ The principal disbursements from the contract funds were salaries for

Francis McCamley (6 months) and Yakir Plessner (3 months). Plessner,

Fox, Von Hohenbalken and Sengupta did some related research on Iowa

State University funds, and McCamley did related research for nine

additional months while supported on an NDEA fellowship.

.1111111
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II. Models for Allocating Given Staff Resources
Among Fixed, Teaching and Research Comitments

in a Single Year

The first problem to be discussed is that of finding the best al-

location of given staff resources among fixed teaching and research com-

micments. This problem could arise in situations in which the college

dean or soMe other official has specified the number of faculty members

which a department may employ and in which enrollment and other consid-

erations have specified the courses (and numbers of sections) that must

be taught and the research projects that must be completed.

The objectives or goals of the department chairmen help define

what the best allocation is. For example, Winkelmann (20) has suggested

that department chairmen might attempt to maximize their departments'

contribution to national income. Hamelman (11) suggests minimizing

the proportion of students failing--i.e., failing despite conscientious

effort.

A. The Basic Model

In one of its simplest forms the problem of allocating staff mem-

bers among alternative tasks can lead to a model which is formally ident-

,

ical with the transportation model. As a result there exist many ways

of obtaining numerical solutions to the problem. Such a formulation also

has the advantage that the optimum solutions can easily be restricted to

3/
integers.

3/ If both the numbers of units of resources available and the numbers
of units required for each course are integers, one of the optimal

solutions will always consist only of integers.

- 8 -



In order to use the transportation type of model certain require-

ments must be met by the problem.

First, both the inputs (faculty time) and the input requirements

per course or research project must be measured in the same units. This

is a trivial requirement in most cases and can probably best be fulfilled

by adopting as the unit of measurement the amount of time required to

teach one section of one course. Teaching load per faculty member is

often measured in this manner anyway. Research inputs are sometimes

also measured in this manner too, especially when the time devoted to

research is measured in terms of the reduction of teaching loads from

that required by some full-time teaching load norm.

Second, the total staff resources available must equal the amount

required to meet all of the departments' teaching and research commit-

ments. If the staff resources exceed the amount needed to meet all

commitments this second requirement may be met by additig artificial

commitments (i.e., units of free time) to take up the slack. If the

staff resources are 'less than the amount required, there is no feasible

allocation and either the commitments or the number of staff members

must be adjusted.

Third, any staff member must be capable of teaching any section

of any course that must be taught, or of completing any portion of any

research project. This does not exclude the possibility that some staff

members might do quite badly in some assignments. (If the effectiveness

- 9



of faculty member i in course j is judged to be extremely low, this

assignment will rarely appear in the optimal solution.)

Fourth, the contribution which a particular staff membe.7: makes if

he teaches a particular course (or conducts a particular research pro-

ject) must be a homogeneous linear function only of the number of units

of time he devotes to that course (or research project). It must not

depend upon the amount of his time allocated to other courses (or pro-

jects) nor upon the allocations of other staff members' time. In other

words, if the value of one section of course j taught by faculty member

i is rated at 10 units, the total value of two sections of course j

taught by faculty member i is rated at 20 units, of three sections at

4/
30 units, and so on.

The mathematical model is presented in the appendix. This model

requires three types of information.

The first type of information required is a list of faculty mem-

bers and the amount of teaching and research inputs available from each

of them.

The second type of information required is a list of courses which

must be taught (and research projects which must be completed) and the

number of units of input required for each.5/

4/ More complicated models could be devised to take account of favorable

effects of variety. Or, we could impose upper limits on the number

of units of a faculty member's time that could be assigned to any one

course. But in the models described in thig report, we assume that

all of a faculty member's time could be assigaed to a single course

without diminution in his "value per section."

5/ The number of units of inputs required per course usually equals

the number of sections to be taught.

- 10 -



r 4,

The third type of information required is a set of objective func-

tion weights. These weights should indicate for the ith staff member

and for the jth task the contribution that would be made to the depart-

ments' objectives if the ith staff member supplied one unit of input for

the jth task. In total, n m of these weights are required, where n is

the number of faculty members and m is the number of different tasks.

The information required for this model could be presented in the

following form:

c
11

c
12

c
lm

a
1

c
J.

c
22

c
2m

a
24

c
nl

c
n2

c
nm

an

1
b
2

The a
i
's indicate the amounts of inputs available from the various

facultyilmmbers.Theb.'s indicate the amount of inputs required by each

6
ofthevarioustasks.Thec..'s are the objective function weights./

ij

6/ In the mathematical programming literature, "objective function" is
a technical term denoting a combination of activity levels and weights

which is to be maximized. "Objective" is used in the sense of "goal"
or "target." The weights included in the objective function might
be market prices in some applications; in the faculty assignment prob-
lem, they would more likely represent the judgments of a department
chairman.
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For small problems such a model may be solved by hand. The solu-

tion procedure consists of two stages. During the first stage a feas-

ible solution is obtained. During the second stage an optimal solution

is obtained.

The first stage consists of a single step which is repeated until

feasibility is obtained. Choose the largest of the c
ij

'a for which

both b and a
i
are greater than zero. If this element is c , set x

rs rs

equal to the smaller of the current values of br and as. Update the

values of b
r
and a

s
by subtracting x from both. This step is repeated

rs

until all b.'s and a.'s are equal to zero.
1

During the second stage the solution is improved until an optimum

solution is obtained. The only way to improve the solution is to in-

crease some allocation vector (one of the x
ij

) from a zero level to

a positive level. The first step involves determining which activity level

to increase. Usually most of the activity levels will be zero and in

addition there will often be several ways of increasing any given activ-

ity level. In such a case the easiest way to determine which activity

7/
level to increase is to first solve the dual of the model. The dual

variables u
i

(the marginal value of a unit of input supplied by the ith

staff member) and v (the marginal value of a unit of input demanded by

the jth task) must satisfy the relationship

7/ For a disession of the meaning of the "dual" of

ming model, see Dorfman, R., P. Samuelson and R.
gramming and Economic Analysis (McGraw-Hill: New
100-104 and 122-127.

- 12-
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if xij is greater than zero. This leads to a system of n + m 1 (or

fewer)equaticasOichcaneasilybesolvedforti.

Those x forwhixh cij +v. is greater thaa zero are candidates
ij 1

for increases in activity levels. The xij to increase first is the one

for which c
ij

u + v is the largest.
i

The next step involves determining how to increase the activity

level. In order to increase the level of any activity (say xrs) it is

necessary to decrease the levels of at least two other activities and

increase the level of at least one other activity. The method of changing

the level of activity xrs should be chosen so that

n m
E E Ax.c

iii=l j=l ij

is maximized subject to

and

a
E A x . = 0
i=1 ij

E A .i =
j=1

= 1, 2,

i= 1 2 p 000,

A x = 1, + Ax
ij

i = 1, 2, n
rs

X.

j = 1, 2,

Once the best way of changing xrs is determined, xrs is set equal to the

largest value permitted by that method of changing the activity level.

- 13-



The second stage steps are repeated until at some point

cij for = 1, 2, V,

M 4 2, 0, M

At that point an optimum solution has been obtained.

A couple of examples may serve.to clarify some of. the ideas dis-

cussed above.

Consider an extremely small department which has two faculty mem-

bers each of whom supplies enough inputs.for three sections per quarter;

the department offers only two distinct courses. Four sections of one

course and tWo sections of the other must be taught in a particular

quarter. The information needed for the model cen be summarized as.

follows:

Course 1 Course 2

Economic principles Theory of the firm

Faculty Member 1

Faculty Member 2

bl = 4 b
2

= 2

a
1
= 3

a
2

= 3

Part of this information can be expressed as a set of equations,

as follows:

V es ..

-14-
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x
11

+ x
12

3

x
21

+ x
22

3

-x
11

x2l -4

-x
12

-x
22

The objective function to be maximized is

me 1
1 4. 7x12 6x21 8x22

The first four equations can also be written in matrix equation

form as:

11
1

0

-1

0

1

0

-1

1

0 -1

x
12

21

x
22

0110
@Mb

The complete set of information can be displayed as in Table 1.

A unit of activity xll assigns one unit of the time of Faculty

Member 1 to Course 1; a unit of activity x12 assigns one unit of Faculty

Member l's time to Course 2; a unit of activity x21 assigns one unit of

Faculty Member 2's time to Course 1; and a unit of activitY x22 assigns

one unit of Faculty Member 2 s time to Course 2.

-15



Table 1. Faculty Allocation Model: Basic Information

Activity levels (Kij):

Possible assignment
activities:

Objective function
weights (cij);

Availabilities: a
i

Requirements: b

Availabilities
and

11
x
12 ;

x
21

x22..] reguLements

1m Ow .1111111I

1

-1.

IMO

[10 7

Initially limiting factors:

E3

-

iV

3

-2

3

-4

3

-2

3

3

-4

-2

maximum



To obtain a feasible solution which will achieve a high value (but

not necessarily the highest value) of the objective function W, we intro-

duce the activities (and establish their levels) in the following order

(Table 2).

At the end of the first step

x
11

= 3
'

X
12

=

al a2

At the end of the second step

x
21

= 0
'

x
22

3 b, = 1, b
2

= 2.

x
11

= 3, x
12

0, x
21

= 0, x
22

= 2,

a
1

= 0,
a2

1 b
1

= 1 b
2

= O.

At the end of the third step

x
11

= 3, x
12

0, x
21

= 1 x
22

= 2,

a
1

= a
2

= b
2

= O.

All commitments are met and all of the available time is allocated, so

Step 3 gives us our first feasible solution.

This solution can be written in matrix form as

0

1

0

-1

0

1

-1

0

_

0

0

-1

r
i
-

2

1

0

.11111111 OXEN

3

3

-2
_ _

- 17-

01111M Ore

64111.1' ..±2.16WikalcairtiMM



Table 2. Faculty Allocation Model: Steps Toward First Feasible Solution

Step Number:

0 1. 2 3

Activity Introduced:

x
11

x
22

x
21

Units Assigned:

3 2

a
1

2

-1)
1

-b
2

.
3

-4

0

3

-1

-2

1

0

0

0

2

E
i=1

c..

c . x..
1.3 13

2

E c. . x .

j=1 11 ij

10

30

30

8

16

46

crim

6

52

'
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Because (a, a2) = (b1 4. b2), whenever we find a set of activities

which satisfies three of these restrictions exactly that same set will

also satisfy the fourth. We can therefore crop the fourth equation

(row) from the above set, and eliminate the column corresponding to

activity x12, which is not used in the feasible solution. We then have

simply,

OM%

1 o o

o 1 1

- 1 o

2

NNW MmIllb

ININ

, or Ax = r.

To compute the dual of this last matrix equation, we write down

a new A matrix (call it B) in which Column 1 is equal to Row 1 of the

8/
A matrix, Column. 2 to Row 2, and COlumn 3 to Row 3. We then write

ON= MY.

V
1Mir

10

8

6
.111111111

Bu = C.

This is the dual we require to test whether the first feasible solution

is also optimal.
-

We can solve for u by using the inverse matrix, B
1
, as u = B c.

The inverse matrix turns out to be

8/ See Dorfman, Samuelson and Solow, 9.21.. cit., p. 101.
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-1

p.m

1

0

0
11/1

1

1

Hence,
ONO easm,

u
1

u
2

,I=1110

1

0

0

1

1

1

-1

-1
=lb

MOM

10

8

6
NINO OM*

from which

Then

and

= 10 + 8 - 6 = 12 ;

u
2

0 + 8 + 0 = 8 ;

v
1

0 + 8 - 6 = 2 ;

v
2

0.

c
11 ul vl'

or 10 12 - 2 ;

c
12

15 u
1

- v
2'

or 7 12 - 0 ;

c
21

u
2

- v
1'

or 6 8 - 2 ;

c
22

u
2

- v
2'

or 8 8 - 0

not
We can/increase W = 10x

11
+ 7x

12
+ 6x

21
+

22
= 52 by changing the

level of any xij, so the first feasible solution is also the optimal

solution.

- 20 -



It may be noted in passing that the dual also has an objective

function, which is to minimize

= ulal + u2a2 + vlbl + v2b2 .

The minimum value of D is equal to the maximum value of W. Thus, in

the present case,

D . = 12(3) + 8(3) + 2(-4) + 0(-2) , or
min

D
min

= 36 + 24 - 8 + 0 = 52 = W
max

In the present small example, of course, we do not need all the

above paraphernalia to determine that the first solution is also optimal.

For what would happen if we increased activity x12 bY
one unit, from

0 to 1?

1. The added unit of x12 is worth seven points (c12 = 7).

2. To get it, we must withdraw one unit of xll worth ten points

= 10), leaving one section of Course 1 unassigned.

3. However, for the moment we have assigned three units of faculty

time to Course 2, for which only two twits are needed. Thus, we with-

draw a unit of Faculty Member 2's time from Course 2, where it is worth

eight points, and assign it to Course 1, where it is worth only six

points.

Thus, in order to increase the level f x12 by one unit we have had

to subtract one unit from each of two other activities (x
11

and x
22

)

- 21 -



and add one unit to a fourth activity (x21). After-all this rearrang-

ing, we find that

W = 10(2) + 7(1) + 6(2) + 8(1), or

W = 20 + 7 + 12 + 8 = 47 .

The objective function has been altered in the amount

(c12-'11) (c21-
) = (7-10) + (6-8) = -3 + (-2) = -5 .

When the numbers of faculty members and courses are considerably

larger than two and two, it is convenient to use standard computerized

methods for determining the optimal solution and the shadow prices asso-

ciated with it. Iterative calculations, matrix inversions and the like

are carried on in the computer and the final solution is printed out,

along with other measures such as the shadow prices, which aid in inter-

preting the solution as such.

A slightly larger example may serveto illustrate the second stage

computations. Consider a department which has four faculty members eadh

of whom teaches nine sections per year or contributes equivalent inputs

to teaching and research assignments. It also offers six course which

during a given year it must offer at the rate of 9, 7, 6, 5, 4, and 3

sections per year. It also is conducting two small research projects

which require respectively two units of faculty inputs and one unit of

faculty input. It will be assumed that scheduling of sections among

- 22 -



quarters and hours of the day is sufficiently flexible that the alloca-

tion for a whole year can be obtained without worrying about which quar-

ter a particular section will be taught.

The information relevant to this problem is given in compact form

in Table 3. Table 4 spells out in detail the 32 possible activities.

Oneunitofactivityx.l .assigns one unit of the time of Faculty Member
j

i to Course j. This subtracts one unit from a
i
and adds one unit to b..

me a
1
s are given positive signs; they are stocks or surpluses to be

ra4711 d04711 ultimately to zero The b3ts are given negative signs; they

are needs or deficits to be satisfied or made good until ultimately no

deficits remain. In Table 4, all the elements in the 12 by 32 matrix

which are not either 1 or -I are zero.

Starting from Table 4, we can arrive at a first feasible solution

as before, assigning the time of each faculty member i to tasks j for

which his c
ij

's are relatively high. The steps are shown in Table 5.

We havenotbeenmeticulousaboutbringingtheveryhighestc..'s in
XJ

first, but have come fairly close to this. For example, b5 = 4, so

only four units of zaculty Member l's time can be assigned to activity

x
15'

which has the highest cij of all (c15 = 15); we assign the other

five units of Faculty Member l's time to activity 11, which is the sec-

ond most productive use of his time (c11 = 10). Activities

are the two best uses of Faculty Member 2 (c27 = 12 and c22

x27 and x22

=. 8). We

assign five units of Faculty Member 3's time to activity x34, which is

- 23 -
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,

bis best use; however, his second most productive use, in Course 5

(c
35

= 10), is no longer available as all four sections of Course 5 have

been allocated to Faculty Member 1. We therefore assign the last four

units of Faculty Member 3's time to activities x36 and x31, in which

his productivity is rated at 9 and 7 points respectively. Faculty

Member 4, on this first round, is assigned to whatvier tasks are left

over, namely to activities x41, x43 and x48 in which his productivity

is rated at 5, 2 and 6 points respectively.

Table 6 shows the first feasible solution in matrix equation

form. The solution is given by xll = 5, x15 = 4, x22 = 7, x27 = 2,

x31 = 1, x34 = 5, x36 = 3-
' x41 3' x43 5' x48

1. The corresponding

dual solution (from Table 7) is given by ul = 15, u2 = 12, u3 = 12,

u
4

= 10, vl = 5 9 v2 = 4, v3 = 8, v4 = 1, v5 = 0, v6 = 3, v7 = 0 and

v
8

= 4.

To obtain timse values of tbe u.'s and 'v.'s, we note that each
1

of the ten rows of the matrix equation in Table 7 is itself an ordinary

algebraic equation:

Row 1: -ul vl = 10

Row 2: ul - v5 = 15

Row 3: u
2

- v
2

- 8

Row 4: u
2

- v
7

= 12

Row 5: u
3

- v
1

= 7

Row 6: -u3 v4 = 11

-28-
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Row 7: - _u3 v6 _ 9

Row 8: u4
-
vl

. 5

Row 9: -u4 v3 = 2

Row 10:
u4

- v
8

= 6

Thus, we have a set of ten equations in 12 unknowns; the ten equations

can be solved uniquely only if the values of two of the 12 unknowns

arezero.Aseachuiandeact, we can discover which two
3

of the unknowns are zero by the following reasoning:

(1) The right-hand side of each equatimt is positives therefore,

the v
j
in each equation is smaller than the u

i
in that equation; hence,

u
1
> 0, u

2
> 0, u

3
> 0 and u

4
> 0.

(2) From Rows 1 and 2 it is clear that v
5

is smaller than v

hence, v1> 0.

(3) From Rows 3 and 4 it is clear that v
7
is 3maller than v

2
;

hence, v2 > 0.

(4) From Rows 6 and 7 it is clear that v
4

is smaller than v
6

;

hence, v6 > 0.

(5) From Rows 9 and 10, it is clear that v8 is smaller than v3;

hence v3 > 0.

Thereminingv.'s two of which might have zero values are v
4'

v
5
, v7 and v8. We note the following additional points:

(6) From Row 2, ul k 15. Therefore,

- 31 -



(7) From Rows 1 and 5, u3 12, and

(8) From Rows 1 and 8, u4 k 10. Hence,

(9) From Row 6, v4 k 1, and

(10) From Row 10, v8 k 4. Therefore, only v5 and v
7
may have zero

values; v5 = 0 and v7 = 0,

Given v5 = 0, we find from Row 2 that ul = 15; then, from Row 1,

that vl = 5; from Row 5, that u3 = 12; from Row 6, that v4 = 1; and

from Row 8, that u4 = 10.

Given v7 = 0, we find from Row 4 that u2 = 12; from Row 3, that

v2 = 4; from Row 9, that v3 = 8; from Row 7, that v6 = 3; and from Row

10, that v8 = 4. This completes the solution.

We next find that c
33

- u
3

+ v
3
= 2 and c

46
-

3
+ v

3
= 1 so x

33

will be increased. The best way to increase x
33

involves increasing

x33 by one unit, decreasing x43 by one unit, increasing x41 by one unit,

and decreasing x31 by one unit.

A new dual solution is then computed. This indicates that x46

should be increased. After increasing x46 by three units, the solution

(Table 8) is given by xll = 5, x15 = 4, x22 = 7, x27 = 2, x33 = 4,

5' x41
= 4, x43 = 1, x

46 3'
and x48 = 1. The corresponding

x34

dual solution (Table 9) is ul = 15, u2 = 12, u3 = 14, u4 = 10, vl = 5,

v2 = 4' v3 = 8' v4 = 3' v5 = 0' v6 = 2' v7 = 0' v8 = 4
9/

At this point

9/ Table 9 can be written out as ten ordinary algebraic equations:

(footnote continued on page 35)
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c.. u v, for i = 1, 2, 3, 4, and j = 1, 2, 3, 4, 5, 6, 7, 8.

Thus, an optimal solution has been obtained. The resulting faculty

assignments are as follows:

Faculty
Assignments (Units):

ResearchCourse
Member 1 2 3 4 5 6 7 8 a

1.1-

1 5 4 9

2 7 2 9

4 5 9

4 4 1 3 1 9

9 7 5 5 4 3 2 1 36

4 8

The value of the objective function, W = E E c.. x ., is 321 in
1=1 j=1 1.7 iJ

the optimal solution compared with 310 in the first feasible solution.

A.SomeTechnicalAspectsoftheObjectiveFuncticmWeights(c..'s)

The c..'s in real situations would most likely be based on the
1]

judgment of the department chairman. Once specified, they guide the

9/ (Continued from page 32)

. Row 1: ul - v = 10

v
1

=Row 2: ul -

Row 3: u2 v
5

15

- v = 8

Row 4: u =
2
12

7

2
Row 5: u3
Row 6: u

3
Row 7: u

4
Row 8: u4
Row 9: u4
Row 10: u4

Again we have ten equations in 12 unknowns. By the same reasoning

as before we find that v
5
= 0 and v

7
= O. We then solve the ten

equations for the ten remaining unknowns, obtaining the values listed
in the text.

v
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allocation process to an optimal solution. But the chairman's judg-

ment in specifying the c..'s may be fallible. It is worth considering,
ij

then, how sensitive the optimal set of assignments may be to variations

in the We can state the following points:
ij

1. If all m n of the cij's are multiplied by the same constant,

the optimal set of assignments will not be changed. For example, if

all cij's in Table 3 are multiplied by 0.5, c15 = 7.5 will be the high-

est weight in the resulting table; c11 = 5 will be the next highest

weight for an activity involving Faculty Member 1; and so on. Activ-
-

ities x
15

(at four units) and x
11

(at five units) will be logical first

steps toward a feasible solution, just as before. The new value of the

objective function for the optimal solution will be 0.5W = 0.5(321) =

160.5.

2. If the same positive constant is added to all m n of the

c
ij

's the optimal set of assignments will not be changed.10/-- For ex-

ample, if we add two to every cij in Table 3, cis = 17 will be the

highest weight in the new table; c11 = 12 will be the next highest weight

for an activity involving Faculty Member 1; and so on. The value of

the new objective function for the optimal solution will be

4 8 4 8 4 8

w =E E(c +2)(x .) =E Ecx 2E Ex
(+2) 1=1 ij i] 1=1 j=1 i i=1 j=1 ij

= W + 2(36) = 321 + 72 = 393 .

10/ Instead of addiag a constant to each cij we could subtract a con-

stantprovidedtbatno cij .is reduced below zero.
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3. If all m n of the cij 's are multiplied by the same constant

0 and are also all increased by the same constant (30, the optimal set

of assignments will not be changed. The new objective function will

be

m n

W(Osu)
= E E (Pcji + a) xi

1=1 j=1

m n m n
= E E c .x . + E E x.. = + o.(36) .

i=1 j=1 J iJ i=1 j=1 13

In the present example, if 0 = 0.5 and (1, = 2, the value of W(0,17) asso-

ciated with the optimal set of assignments will be

W0,00 = 0.5W + 2(36) = 0.5(321) + 72

= 160.5 + 72 = 232.5 .

In the resulting cij table, c15 = 9.5 will be the highest weight;

c
11

= 7 will be the next highest weight for an activity involving Fac-

ulty Member 1; and so on.

Thus, any linear transformation applied to all m n of the cj 's

will leave the optimal set of assignments unchanged, provided that no

cij is reduced below zero by the transformation.

The reason for this rather encouraging stability of the optimal

assignment set in the face of linear transformations or "codings" of

the cij's may be clarified by an illustration.

-37 -



Units
Course 1 Course 2 Available

(ai)

Faculty Member 1 10 7 3

Faculty Member 2 8 6 3

Unis Required (b.) 4 2 6

The optimal solution is xl, = 3
'

x
12

= 0, x21 = 1 and x
22

= 2; W = 3(10)

+ 0(7) + 1(8) + 2(6) = 50.

What happens if we now transfer one unit of Faculty Member l's

time from Course 1 to Course 2? Clearly, we must transfer one unit of

Faculty Member 2's time in the opposite direction, from Course 2 to

Course 1. The "gain" in rearranging Faculty Member l's time is (-10+7);

the gain in rearranging Faculty Member 2's time is (-6+8). Thus, we

lose 3 points on Faculty Member 1 and gain 2 points on Faculty Member

2; the net loss on the rearrangements is

(-cec12) (-c22+c21)
(-10+7) + (-6+8) = (-3) + (2) .

l

The optimal solution is stable because any attempt to change it

results in a loss-to-gain ratio of -
3

2
If we add a constant, say 2,

to each c
ij'

we have (-12+9) + (-8+10) = (-3) + (2); the numerator and

denominator of the loss-to-gain mtio are unchanged, so the ratio it-

self is unchanged. If we multiply each c
ij

by a corutant, say 0.5, we

have (-5+3.5) + (-3+4) = (-1.5) + (1); the loss-to-gain ratio is still

-1.5 -3
, as before.

1
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Thus, the stability of the optimal set of assignments depends on

the stability of relative differences or loss-to-gain ratios associated

with unit rearrangements; each rearrangement, as we have seen, invol-

ves four ^ 's. Transformations of the type c*
j 9

= ot + c =
i

1, 2, n, j = 1, 2, 000, m, where a, and 0 are arbitrary constants,

do not change the relative differences.

In the present example, the optimal assignment set would be

stable under slightly less restrictive conditions. For example, we

could multiply c11 and c12 by 0 and c21 and c22 by any constant strict-

ly less than 1.50 (we assume 0 > 0) without changing the optimal solu-

tion. But it is hard to generalize when we go beyond uniform linear

codings. A technique known as "sensitivity analysis" can, however,

be used to determine the ranges of values over which stipulated c.i.'s
j

may be varied without changing the optimal set of assignments.

B. Some Logical, and Practical Aspects of the Objective
Function Weiights, ( cij 's)

Despite the technical points we have just discussed, it seems de-

sirable to specify the c
ij

's as approximations to magnitudes which,

in principle, could be given economic values and/or other values in

the larger society. The vocational value of a college education is

one of the most tangible of these magnitudes, and a good deal has been

written on this subject by Schultz (18), Becker ( 2) and others.

When a university president allocates funds between the professional
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schools and the College of Liberal Arts, some implicit judgments may

be inferred--for example, the last million dollars allocated to Liberal

Arts should be as productive (in terms of the president's value system

or objective function) as the last million dollars allocated to the

prolessional schools in which career income is an important and fairly

predictable output of the training received.

If we value Faculty Member l's contribution in a sectien of Course

5 at 15 points and in a section of Course 1 at 10 points, we ought to

15
mean that we think he accomplishes as much "good" in Course 5 as in

10

Course 1. If Faculty Member 2's contribution in a section of Course

5 is rated at 7 points, we ought to mean that we think he accomplishes

7
as much "good' per section in that course as does Faculty Member

1. In a vocationally-oriented department, "good" may be roughly pro-

portional to "increase in probable career income of students taking

the course."

We might alternatively think of the c..'s as estimates of the
13

national market values per course (i.e., the average salary cost per

course) of professors who can teach course j as well as faculty member

i. Would it cost about $15,000 to hire another professor who could

teach Course 5 as well as Faculty Member 1? Would it cost about $10,000

to hire someone who could teach Course 1 as well as Faculty Member 1?

Competition for faculty members does express itself in terms of sal-

aries, teaching loads, class sizes and other considerations, most of

which have a direct bearing on salary cost per course or per student
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quarter, so there would be some realism in trying to relate the c Is

to salary costs of hiring comparable performance in the national mar-

ket. In general, it seems that the salary costs per section in dif-

ferent courses should be roughly proportional to the amounts of "good"

done to the students, so the two approaches could lead to approximately

the same set of c
ij

s.

For the moment, let us assume that the c
ij

's in Table 3 are esti-

mates of the national average salary cost of obtaining the specified

levels of performance in the stipulated courses. If c15 = 15, in

other words, we assume Faculty Member 1 would justify a $15,000 salary

if he were teaching nine sections of Course 5. (We leave aside the

question of need for variety in one's teaching program.)

Given the size of the particular department, however, there are

only four sections of Course 5 to be taught. The best use of Faculty

Member l's talents within this department is four units of Course 5

crid five units of Course 1, and the average value of these services

would be

9

60 50

9
= 12.222, or $12,222 .

If we apply this interpretation of the c..'s to all four faculty
1J

members we may summarize the results as follows:

1:2-,aaiLtuaali
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(1) (2) (3) (4)
Value if

Value as assigned to
specialist the 9 sections Value in Value if
in his best in which optimal used as in
course (9 he has highest solution for the first

Faculty sections value to this department feasible
Member, of it) department as a whole solution

1

2

3

4

Totals:

$15,000 $12,222 $12,222 $12,222

12,000 8,889 8,889 8,889

11,000 10,556 8,778 9,889

8 000 6 889 5 778 3 444

$46,000 $38,556 $35,667 $34,444

1000
In arriving at these figures, we have multiplied each cij by If

we reverse this procedure and multiply each of the Column (3) and Col-

9
umn (4) totals by -row we have

and

L.' 9--_\35,667 1

1000 J
= 321

34,444 ( 910)00
= 310 .

The second result (310) win be recognized as the value of the objec-

tive function associated with the first feasible solution, while 321

is the value of the objective function associated with the optimal so-

lution.

A few more comments are in order:
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1. The optimal assignment set for each faculty member depends

on the array of talents of all other faculty members in the department.

Once Faculty Member 4 has been hired, the optimal use pattern for Fac-

ulty Member 3 is one valued at $8,778.

2. If Faculty Member 4 is on a' one-year appointment while the

other three members have tenure, in planning for the next following year

it might be desirable to assign Faculty Member 3 to courses in which

his total value is $9,889 (as in the first feasible solution) and try

to recruit a new Faculty Member 4 who would be strong in Courses 1 and

3. (If Faculty Member I should leave, Faculty Member 3 could be assigned

to courses in which his value is $10,556.)

3. Faculty Member 2 is evidently stronger in research than in

teaching and might reasonably move to another institution which pro-

vides more time and facilities for research.

4. Faculty Member 1 has unusual qualifications for Course 5.

These might extend to one or Pao closely related courses in the same

field (perhaps at the first-year graduate level as well as at the ad-

vanced undergraduate level). A larger department with more enrollment

in Course 5 and closel related courses could afford to offer Faculty

Member 1 about $15,000.

5. The faculty allocation model maximizes an objective function

pertaining to the department as a whole in a single year. Longer-run

goals for the department could also be expressed as values of the objec-

tive function. Is it realistic to plan for a department in which the

-43 -
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averagecijis 15 for the optimal assignment pattern? If so, the fac-

ulty would be worth (and would probably require) an average salary level

of about $15,000, not counting the upward trend over time in the na-

tional salary structure for persons of given ability.

Faculty Member 1 is evidently of the desired quality, if used as

a specialist. However, the peak performances of Faculty Members 2, 3

and 4 in their best courses are currently valued at $12,000, $11,000

and $8,000. Is this simply a matter of inexperience and other remed-

iable factors? If not, the long-run goal for the department (average

c.. to equal 15) may be incompatible with the retention of some or all
3.3

of these faculty members. Or, the goal might be redefined to state

that new faculty members should be of the desired quality or potential

(expected cij's of 15); an average performance level of less than 15

for new and existing faculty members combined would be accepted as a

fact of life during a fairly long transition period.



Ill. Models for Making Optimal Decisions Over a
Sequence of Years

Decisions which educators make in a given year may affect next year's

alternatives. Decisions made about admissions of new students this year

may affect the number that can be admitted in subsequent years. Faculty

members recruited this year will typically remain on the staff for several

or many years, affecting program quality and other faculty recruitment

needs and opportunities throughout their tenure.

A. Recursive Prosramming Models

Recursive programming models can be used to examine the effect of

this year's decisions on future years's alternatives. They can also be

used to show the sorts of decisions which might be made if only this

year's information is used as the basis for making certain decisions.

The most commonly used recursive programming models have been

patterned after the model of Richard Day (9). These models include re-

cursive constraints on activity levels and on resource use which limit

the increases (or decreases) in activity levels and resource use over

last year's levels to certain percentages of last year's level. The

objective function weights are often based on last year's market prices.

Recursive programming models of educational institutionsolight well

include "flexibility constraints" to limit the extent to which this year's

activity levels deviate from last year's activity levels since educators

probably would not want admissions, staff additions, and so forth to vary

widely from year to year. However, unlike the situations for which re-

cursive programing models have ordinarily been designed, the production
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processes relevant to educational institutions often require more than

one time period to complete. Thus the amount of teaching resources avail-

able for instructing this year's freshmen depends upon the amounts re-

quired to teach sophomores, juniors and seniors (new students admitted

during the past three years). Thus a second sort of recursive con-

straint must be included in recursive models of educational institutions.

Including both flexibility constraints and the recursive constrairts due

to multi-period production can lead to infeasible solutions. In such a

case it seems appropriate to require the recursive constraints arising

from multi-period production to be satisfied and to allow, if necessary,

the flexibility constraints to be violated.

In order to avoid this problem in the example which follows, the

flexibility constraints will be eliminated and replaced with quadratic

terms in the objective functions, W, which tend to favor (in a ceteris

paribus sense) last year's activity levels. For example, a change of

20 percent in the level of activity i from the preceding year would

involve a "penalty" (a subtraction from W) four times as large as the

penalty" for a 10 percent change; the penalty for a30 percent change

would be nine times as large as that for a 10 percent change.

For the model to be used here the objective function weights will

be recursively determined. Since educational institutions are not

confronted with markets in which output prices vary widely from year

to year, the same output "prices" will be used for all time periods. Be-

cause the productive processes in which educational institutions are in-

volved require more than one period to complete there is a problem of

allocating these "prices" among the several years required to produce
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the various outputs. More specifically the problem is one of deciding

what portion of the output "price" to allocate to the first period of

the production process. For the sp:-,ific model to be used here the "shadow

prices" from the previous year's solution will be instrumental in this

allocation.

Both the "Day" type of recursive model and the type to be used here

are presented in Appendix 2.

The specific problem to be considered is similar to that which

might be faced by a department which is capable of awarding both

Bachelor's and Master's degrees. In order to make the problem manageable

certain simplifying assumptions will be made. Although in actual practice

graduate students take some and undergraduate students take most of

their courses in other departments, the model will assume that all courses

are taken within the major department. It will also be assumed that the

department can set admission levels for both graduate and undergraduate

students.

Certain other assumptions will also be made. Undergraduate class

sizes will be set at 35 students; graduate class sizes will be set at 18

students. Undergraduate students are assumed to take (on the average)

17.5 courses per year for four years; M. S. students are ellAAst,M^AICA.001A.MGIJ. .11.

9 courses during the first year of their studies and 3 courses plus 9

credit hours of research during their second year of study. It is assumed

that supervising 18 credit hours of thesis credit requires as much teach-

ing resources as is required to teach one graduate course. It is assumed

that the department has six faculty members, that each of these faculty

-47 -



, TO' .mvittlroavwArmtentretwANKIftsz

members has signed a contract calling for supplying teaching inputs

equivalent to that required to teach 8 sections and that the per-

mitted division between undergraduate and graduate teaching ranges

between 7 undergraduate sections and 1 graduate section per year per

faculty member to 4 undergraduate sections and 4 graduate sections per

faculty member per year. It is also assumed that the teaching budget

for each year includes 2 positions for graduate teaching assistants

who each supply 5 units of teaching inputs per year. It is assumed

that for the courses taken by freshmen and sophomores up to 40 percent

of the teaching inputs can be supplied by teaching assistants without

loss of instructional quality. The department is assumed to be limited

to 30 new freshmen per year and 7 new graduate students. That is, these

are assumed to be the maximum numbers of new students willing to enroll

each year. The department is assumed to assign relative prices of 3 to

2 to B.S. and M.S. degrees.

The actual activities and constraints used are presented in Appendix 2.

It was assumed that at the beginning of the first year considered by

the model the department had 21 seniors, 22 junirs, 23 sophomores and 6

graduate QvildPnt.Q.

The approximate admissions solution generated by the model are pre-

sented in Table 10. These solutions are characterized by a period of ad-

justment from period 1 through period 10 followed by 4-year cycles from

period 10 onward. The admissions solutions are shown in more detail in

Table 11, along with the calculations of the value of the objective

function in each year.
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Table 10.

Year

Optimal Admissions of Undergraduate and Graduate Students Re-
skectited from a ReairsizeprogLarmning Model

New Undergy.211.22.12.1 New Graduate Students

30

AIMS

7

2 28 3

3 23 5

4 20 5
5 21 7

6 22 7

7 23 7

8 24 7

9 25 7

10 26 7

11 24 7

12 24 6

13 25 7

14 26 7

15 24 7

16 24 6

17 25 7

18 26 7

19 24
20 24 6

21 25 7

a.7,_
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It is apparent that the recursive solutions are very efficient from

period 10 or so onwarch Some idea of the relative inefficiency of this

particular recursive model can be obtained by comparing its solutions

during the first 10 periods to the solution of a dynamic programming

model covering the oame interval of time.

B. Dynamic Programming Models

In order to make the comparison meaningful the dynamic programming

model was required to satisfy the same initial conditions as the re-

cursive model and in addition it was required to leave sophomore, junior,'

senior and second-year graduate student enrollments in period 11 at the

same levels as those generated by the recursive model.

The solution to the dynamic programming model is presented in

Table 12. Since the dynamic programming model maximizes a single ob-

jective function for the whole 10-year period rather than sequentially

maximizing an objective function for each year it was to be expected that

its performance would be somewhat better than the recursive programming

model. The dynamic programming model allows total admissions of at

least 250 undergraduate students and 61 graduate students. This is 8 more

undergraduate students and 1 fewer graduate student than allowed by the

recursive programming model during the same ten-year period.

There is little doubt that if resource availabilities can be pre-

dieted accurately for several years into the future a dynamic programming

model will be better for planning purposes than a recursive programming

model. On the other hand; if resource levels can be predicted accurately

,
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Table 12. Optimal Admissions of Undergraduate and Graduate Students
as Computed from a Dynamic Programming Model

Year_ New Under raduates New Graduate Students

..r

1 30 7

2 24 7

3 23 5

4 23 6

5 24 3

6 25 7

7 26 7

8 24 6

9 25 6

10 26 7
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only for the current year (or perhaps only two or three years at a

time) the relative advantage of dynamic programming models is greatly

diminished.

The specific recursive programming model considered here proved

to be somowhat more efficient than had been expected. It seems likely

that decision models based on similar recursive programming models will

be far less efficient than would be indicated by the results presented

in Table 10. The need to make decisions recursively (i.e., once each

year or once each planning period) can hardly be avoided since the

accuracy or certainty of the information available about resource

availabilities and so forth for any particular time period is likely

to increase as that time period draws nearer. However, it would seem

reasonable to expect that better decisions could be made this year if

whatever information is available about future years is used even if this

information is not known with certainty. Such an approach would probably

require the determination. (tentatively) of admissions (and other activity)

levels for future periods as well as for the current period. The future

admission levels would of course need to be revised the following year

if new information became available. It is likely that such an approach

could also take advatitage of some of the techniques of stochastic pro-

gramming.

C. A Common Sense Interpretation of the Dynamic Programming. Model

All the values of variables involved in the ten-year dynamic pro-

gramming model are shown in Table 13. The model itself in matrix equation

form is presented in Table 16, Appendix 2.
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The complete model involves 50 activities (5 activities in each

of ten years) and 30 restrictions (3 restrictions in each of ten years).

The activity levels in, say, Year 3 depena p-rtly on the numbers of

freshmen admitted in Years 0, 1 and 2 and the number of beginning

gradtate students admitted in Year 2. The activities and restrictions

directly relevant to Year 3 are as follows:

Relevant Activities:

Years 0 1 and 2: Year 3

IBSO

c
it

BS1

* *

BS2

*

MS2

*

BS3

3.00

1S3

2.00

13 T3 TR3

J3

U3

G3

1.0 1.0

1.0

4.0

1 0

3.0

-1.0

0.6

-1.0

1.0 1.0

-3.0

0

! 84

.< 36

X
it

23 30 24 7 23 5 48 0

W = 23 (3.00) + 5 (2.00) = 69.00 + 10.00 = 79.00
3

* Not used in calculating W3.

The objective of the department is to convert 48 sections' worth of

faculty time each year (aver the ten-year period) into as many "output

points" as possible, given that each B.S. degree is valued at 3 points and

each M.S. degree at 2 points. (As the M.S. candidates already have the

B.S. degree, the 2 poinUirepresent an increment of value added over and

above the B.S. degree).

There is only one activity available for producing M.S. degrees but

there are two alternative activities for producing B.S. degrees. The

cost of a unit level of each activity in sections of faculty time is:

rfuv,

4 1 44'
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(The

M.S.:

B.S.(I)

B.S.(II):

1.17 sections of faculty time

2.00 sections of faculty tine

1.60 sections of faculty time.

B.S.(II) activity also requires 0.40 sections of teaching assistant

time, but we will disregard the cost of this input for our present

purpose).

The value of output per section of faculty time in each activity is:

2.00 oints
1.17 sections

.3.00 points
2.00 sections

3.00 22.tatl__
1.60 sections

1.70 points per section

1.50 points per section

1.88 points per section.

Within the terms of the problem, Activity B.S.(II) produces the greatest

value per section; Activity M.S. is second and Activity B.S.(I) is third.

Of the three restrictions in each year, J insures that freshmen and

sophomores get the required amount of instruction, U that juniors and

seniors get the required amount of instruction, and G that graduate students

get the required amount of instruction and thesis supervision. The unit

of measure in restrictions J and U is one-half sections of faculty time;

the unit for G is one-sixth section of faculty time.

In Table 13, the shadow prices corresponding to each restriction in

a given year indicate the number of points by which the value of the ob-

jective function could beincreased if one more unit of the restricting

resource were available (one more half-section in J and U, one more

sixth-section in G). The difference in units is inconvenient, so we

- 56 -



multiply the shadow prices of J and U by 2 and that of G by 6 to obtain

the increase in value of the objective function pe additional section

of faculty time in all three cases with the following results:

Shadow Prices Per Section of
Faculty Time:

Year

Levels of Selected Activities

x3(=I) x4(=T) x5(=TR)

1 0 0 0 50 3 4

2 1.70 1.70 1.70 50 5 4

3 0.80 1.33 1.33 48 0 2

4 1 20 2.00 2.00 47 0 1

5 1.50 1.50 1.50 12 36 1

6 1.70 2.50 1.86 50 0 0

7 0.80 0.80 0,80 50 2 4

8 1.82 2.00 2.00 50 4

9 0.90 1.50 1.50 49 3

10 1.88 1.88 1.88 50 3

The basic economic problem is to allocate 48 sections of faculty

ttme among freshman-sophomore, junior-s.enior and graduate level teaching

so as to maximize the value of total output. The shadow prices are

marginal valua products; in the continuous cases usually stressed in

economic theoTy, the value of an additional section of faculty time

should to the same in all three uses.

In Years 1, 2, 5, 7 and 10 this three-way equality applies.

In Years 3, 4, 8 and 9 the shadow prices of U and G are equal but the

shadow price of J (marginal value product of faculty time in freshman

-57-



and sophomore teaching) is lower. In Years 3, 4, and 9, the shadow price

of J is 0.6 times as large as the shadow price of U.

Activity x5 has the effect,of equating the shadow prices of

U and G whenever x
5
> 0, and x

5
is greater than zero in all years ex-

cept Year 6. Activity x4 has the effect of equating the shadow prices

of J and U when x4 >0, as it is in Years 1, 2 5, 7 and 10. When

Activity x4 = 0, in most (but not all) cases the marginal value product

of faculty time in teaching freshmen and sophomores is only 60 percent

as large as that in teaching juniors and seniors under the assumptions

of our problem.

In Year 2, it appears that the most "profitable" activity to

expand is the production of M.S. degrees; in Year 5 the production af

B.S. degrees using Activity B.S.(I) without teaching assistant help;

and in Year 10 the production of B.S. degrees using Activity B.S.(II)

with teaching assistant help.

Evidently the solutions of dynamic prog:amming models can be

given common sense interpretations. The technique of solution is

essentially that used for ordinary linear programing models. The total

numbers of activities and restrictions increase with the number of years in

the planning period and alsr.) with the real complexity of the department

and/or the degree of detail with which it is represented. The Plessner-

Fox-Sanyal model (17) has 15 activities and 16 restrictions in each year

of a four-year planning period, or 60 activities and 64 restrictions for

the period as a whole.

The McCamley model (15) of a large Economics department has 82

activities and 57 constraints for a single year; a ten-year dynamic pro-
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gramming version at this level of detail would have 820 activities

and 570 restrictions. A model of this size would not exceed the

capacity of modern computers; however, it remains to be seen whether

this level of detail is needed (or is La some sense useful) in a ten-

year planning model.



IV. A Two-Level Decision Model for Allocating the Resources of a
College Among Its Constituent Departments

The third problem to be discussed is that of allocating fixed

resource supplies among several departments (or among other types of

suborganizations or sectors). The dean of a college may be granted

a certain budget for the operation of his college. He is also likely

to have resources such as office space and classroom space which

are available to him in limited quantities. He may want to allocate

these resources so as to achieve a maximUm value of some objective

function.

In addition to the resources which obviously need to be allocated

there will usually be other products whose use and production must

be coordinated. In the previous model it was assumed that students

take all of their courses in one department. This, of course, is

not the case. There is, therefore, a need to insure that the amounts

of instruction required by students outside their own departments do

not exceed the amounts supplied by the various departments which supply

service teaching. In a planning model it may therefore be appropriate

to consider the dean as being concerned with the allocation of that

instruction and of those other outputs which are produced by one de-

partment for use by other departments within the same college.

One way for the college dean to decide on the appropriate a

locations of the various resources would be for him to treat his college

as one large decision-making unit. He could decide how much of each

output to produce and what input combination to use in producing it.
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A byproduct of these decisions would be decisions about the amount of

each resource to allocate to each department.

Fortunately, in some cases the dean may be able to allocate re-

sources among departments, let the departments make most of the output

and other activity level decisions, and still accomplish whatever output

objectives he may have in mind. One of these cases occurs when all of

the constraints are linear, the college objective function is linear,

and when in addition, the departmental objective functions-assign

the same weights to the various outputs and inputs as are assigned

by the college objective function. The results of Kornai and Liptak (13)

assure us that in such a case there exists a system of quotas (for the

resources allocated by the college dean) that, 4f implemented, will insure

that the college dean's objective function will be maximized. The de-

composition algorithm of Dantzig and Wolfe (8) provides a basis for

the construction of a decentralized decision-making approach which
.

can be used to discover an optimum set of quotas. Under this approach

the college dean would, at each phase, ask each department how much of

each resource it could "profitably" use if certain "prices' were assigned

to each resource. The information which the departments give him would

be used to aid in the derivation of a new set of "prices." The college

dean would then ask each department to tell him how much of each re-

source it would use at these new prices. This process would continue

until an optimum set of quotas is obtained.

A more precise description of this approach and its termination

conditions can be found in the appendix. The primary advantage of this

-.7.41,X,
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latronse.

approach (and of others like it) is that it shifts nuch of the decision-

making responsnAlity from the college dean to the individual de-

partments.

Consider a college having three departments (departments A, B, and

C). Suppose that the college has a teaching budget of 220 thousand

dollars per year, that 80 (graduate) students from other colleges take

courses in department A, 115 take courses in department B, and 210

take courses in department C. Suppose further that graduate students

in departments B and C take courses in department A and that graduate

students in department A take courses in department B. To simplify

matters it will be assumed that undergraduate enrollment, curriculum,

and distribution of undergraduate students among majors is predetermined.

Some of the assumptions which will be made concerning the in-

dividual departments are outlined in Table 14. The specific models used

for the departments are presented in Appendix 3. These models all

allow alternative input combinations in the' production of research

publications, and in the teaching of undergraduate stUdents. They

classify graduate students according to means of support. They also

permit varrying amounts of research, graduate teaching, and undergraduate

teaching per faculty member.

The specific formulations used are presented in Appendix 3.

The model required 7 phases to reach an optimum set of quotas.

The "prices" and corresponding resource use levels for each phase are

presented in Appendix 3, Table 21 . An optimum set of quotas is also pre-

sented in Appendix 3, Table 21 . The departmental solutions are pre-

sented in Appendix 3, Table 22 .

vardeVe
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Table 14. Two-Level Decision Model: Some Characteristartments A B & C

Department Department Department
Item A

a/
No. of faculty members

Undergraduate teaching re-
quired (no. of student courses)

Graduate service teaching
required (no. of student

5.5

1850

8.5

2750

7.5

2250

courses) determined by college dean 210

Research budget ($1s) 40,000 20,000 45,000

Faculty salaries (Vs) 11,000 10,000 12,000

Undergraduate class sizes
Faculty instructors 35 30 40
Both faculty and
graduate student
instructors 30 25 35

Graduate class sizes 24 15 18

Thesis "class sizes" 6.5 7.0 7.5

Teaching Assistant Salaries(Vs) 2800

Research Assistant Salaries(Vs) 2750

Number of inputs supplied by
teaching assistants (sections

2600

OD ON

2750

2700

taught per year) 5 6

Number of years required to
obtain M.S. degree 2 2 2

Number of courses taken to
obtain M.S. degree
in: Department A 10 3 4
in: Department B 3 10 0
in: Department C 0 0 9

Thesis Credits 3 3 3

Objective function weights
research publications 2.50 2.00 3.00

M.S. degrees 1.50 1.75 2.00

a/ Each department is assumed to have an integral number of faculty members
one of whom devotes half of his time to administrative functions.

frL
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The college model as a whole looks fairly complicated. It is im-

portant, therefore, to consider the model for one of the departments in

considerable depthr, This will assure that we understand the logical

structure of the model, the realism of its content (class sizes, teaching

loads, and the like), and the mechanisms through it allocates limited

resources among the various departmental activities.

A Common Sense Inter retation of the Model for Department A

In Table 15 we have rearranged the rows and columns of the Depart-

ment A model to emphasize the relative independence of its three major

programs, research, undergraduate teaching and graduate teaching, in-

cluding thesis supervision.

1. Sizing uk the research piogran. When this is done, we see

that the research program includes only three possible activities (A1,

A
2'

A
3
) and uses only three kinds of resources, namely research assist-

ants (am 4), faculty man years (Row 5), and research current expense

funds (tow 6, in part). Activities A5, All, Al2 and Ail show that the

salar-les of research assistants and the research portions of faculty

salaries, as well as research current expense funds, must all be

fitted into the $40,000 research budget indicated in Row 6 of the De-

partment restrictions column.

Regardless of anything else, then, our research program must stay

within the $40,000 limit. The dollar costs of a unit of each research

activity (that is, one man year of faculty time, plus research assist-

ants, if any, plus current expense funds) are as follows:
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ROW

No. Resource

Cost per
Unit of
Resource
(dollars)

Cost"per unit. of Activity:

Al A2
(d-oTra-Fs ) (WM Fs)

A3
(daTa7s)

4 Research assistants 2,750 8,250 2,750 0

Faculty time 11,000 11,000 11,000 11,000

Current expense 1 3,000 1,500 750

Total dollar cost (Row 6): 22,250 15,250 11,750

The outputs of a unit of each activity are valued as indicated by the ob-

jective function weights, the cti's, at 5.00, 3.75 and 2.75 respectively for

Activities Al, A2 and A3. The $40,000 budget restriction would permit a maxi-

mum of 1.798 units of Activity Al, pr 2.623 units of Activity A2, or 3.404 units

of ActivityA3. The values of the total outputs associated with each of these

choices are given in Column (3) below:

Activity (1) (2) (3)

Maximun No. Value of Value of
of Units of

No. the Unit of Output

Activity

Faculty Man-
years required
for maximum

(5)
Dollar Cost Per
Unit of Value of

output:
$40,000 ; Col. 3

(dollars)

Al 1.798 5.00 8.990 1.798 4,449.

A2 2.623 3.75 9.836 2.623 4,067.

A3 3.404 2.75 9.361 3.404 4,273

lf we regard dollars as our most limiting factor, then Activity A2 is

moderately superior to Activity A3 and Activity A3 is moderately superior to
not

Activity Al. However, the differnces ardiarge; as indicated in Column (5) the
are

dollar.costs per unit of output-value/$4,067, $4,273 and $4,449. Presumably,
combination

a unit of output-value represents some/of quantity, quality and kmportanca of the
an

research results obtained and reported. For exampledarticle of average km-

-66-
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portance in the refereed national journals most relevant to Department A

might be rated at (say) 2.00 output-value units and the values of other

kinds of research reports and articles could be related to this as a base.

If the chairman of Department A has some doubts about the precision of

his c..1s, he will be somewhat diffident about his ability to choose
3.3

between Activities Al, A2 and A3 on the basis of Column (3) or its

equivalent, Column ( 5). However, if dollars are the only scarce re-

source, the computer will (quite correctly on the basis of the numbers

we feed into it) tell us to put our entire $40,000 into 2.623 units of

Activity A2.

For Future reference we must take note of the fact that Activity Al is

far superior to Activity A2 in terms of output per faculty man year

(5.00 versus 3.75 value units) and Activity A2 to Activity A3 (3.75

versus 2.75 value units). Hence, if faculty time turns out to be the

most limiting factor, we will be wise to emphasize Activity Al.

2. Undergraduate teaching. Activities A7 and A8 are the only ones

involved directly in undergraduate teaching. Row 7 tells us that De-

partment A must provide at least 1850 student courses of undergraduate

instruction.Althoughnoc..'s (objective function weights) are assigned

to Activities A7 and A8, the restriction in Row 7 really gives under-

graduate teaching an absolute priority over research and graduate teaching.

Row 7 is a categorical imperative: "Thou shalt teach at least 1,850 student

courses to undergraduates, regardless of other considerations." Alternatively,

we could assign relatively high c
ij

's to Activities A7 and A8, to insure

that the computer rated them as having higher values per faculty man year and
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per dollar than any other activities. We would still need to specify

an upper limit, presumably 1,850, on the number of student courses to be

taught, or the computer might tell us to teach more student courses than

any realistic estimate of the enrollment which will be forthcoming.

Row 7 says, then, that undergraduate teaching comes first. Activities

A7 and A8 have the following meaning:

Row No.

Outputs (-)

and
Inputs

Activity Number

A7 A8

7 Class size -35 -30

Proportion of teaching
done by:

9 Faculty 1 0.5

11 Teaching assistants 0 0.5

The basic unit here is the individual class. The salary cost of one

class of 35 taught wholly by a faculty member (Activity A7) is $7,400 = $925.
8

The salary cost of an instructional pattern which uses 0.5 "sections' worth"

of faculty time

30 students

Faculty:

and 0.5 "sections' worth" of teaching assistant time per

(Activity A8) is:

0.5 _17,400 _TAW =
8 16

Teaching
$2,800 2 800

Assistant: 0.5
5 10

Total:

Activity A7 costs

A8 costs
$742.50

30

is concerned, the two

per student-course.

34:4-447.i=i4.'

$462.50

280.00
$742.50

AEL = $26.43 per student
35

= $24.75 per student course.

Plus:

course, while Activity.

So far as the model

activities are equally acceptable in terms of quality

- 68 -
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The total resource costs of teaching 1,850 undergraduate student-

courses by each method are:

Total output
(in student-courses)

Number of units of activity
required

Activity Number
A7 A8

1850 1850

52.86 61.67

Sections' worth required from:
Faculty 52.86 30.83
Teaching assistants 0 30.83

Total dollar cost: $480896. $45,788.

The dollar costs are moderately lower for Activity A8. Accivity AS

is much more economical in the use of faculty cime, if that proves to be

a major consideration. Also, Activity A8 provides support for some gradu-

ate students.

3 . The graduate (M.A. or M.S.) program: Activities A4, A5 and A6

have the following interpretations:
Activity Number

Row No. Description A4 A5 A6

* Output: M.S.degrees in Dept. A. 1 1 1

1 Courses per student taken
in Department A: 10 10 10

2 Courses per student taken
in Department B: 3 3 3

,

8 "Equivalent courses" repre-
sented by thesis credit
taken in Department A:

Means of support:
13 Not supported by university funds:

4 Research assistants
6- Research budget

11 Teaching assistants
3 Teachinr budget

3 3 3

-2

$5500
-10

$5600
* The outputs (one M.S. degree) are not stated explicitly in a single row

but aro implicit in Rows 13, 4, 6, 11 and 3.
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The M.S. program is assumed to take two years regardless of the

student's means of support. In the Activity A5 column, the -2 and the

$5500 imply that he serves as a research assistant for two years on a part-

time salary of $2,750 a year. Under Activity A6, the -10 and the $5600

tmply that he teaches 5 classes a year for two years on a part-time

salary of $2,800 a year.

Activities A9 and A10 have the following meanings:

Row No. Description
A9

Activity Number
A10

1

8

10

Class size

Thesis supervision, equivalent
class size

Sections' worth of faculty time

-24

I

-6.5

1

Salary cost per equivalent
section: $ 925 $ 925

Per equivalent student course: $ 38.54 $142.31

It is assumed that each M.S. degree requires both the 10 courses in

Row 1 and the thesis credit (equivalent to 3 courses) in Row 8; each of

these activities draws directly on only one resource, namely faculty time

(Row 10). It wcmld therefore be logically possible to combine activities

A9 and A10 to say that 10 actual courses plus 3 courses' worth of thesis

10 3
credit require 6.5

0,4167 + 0.4615 = 0.8782 sections' worth

of faculty time. At the same time Rows 1 and 8 could be combined to say

that an M.S. degree requires 13 equivalent courses at an average equivalent

class size of 14.8 students.
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4. The "faculty allocation activities." Activities All, Al2 and A13

represent three different kinds of time allocations for faculty member,

along with the corresponding charges against teaching and research budgets

(Raws 3 and 6) and against the initial "pool" of faculty man years--in

this case 5.5 (Row 12).

The items with negative signs in Rows 5, 9 and 10 of Activity All

have the following meanings; per unit of Activity All:

Row:5: One-third of a man year of faculty time is made available

for research activities.

Row 9: Six sections of faculty time are made available for

undergraduate teaching.

Row 10: Two sections of faculty time are made available for

graduate teaching, including thesis supervision.

Eight sections a year are regarded as a two-thirds time load, leaving

one-third time available for research.

A unit of Activity A 12 provides one-third of a faculty man year for

research, four sections of time for undergraduate teaching, and four

sections for graduate teaching. A unit of Activity Al3 supplies one

faculty man year exclusively for research.

5. Putting thims together. Activities 11 and 12 imply that no

faculty member shall be required to teach more than 3 courses a year.

With only 5.5 faculty man years available, a maximum of 44 sections can be

taught by faculty members. If Activity All were used exclusively, the

maximum number of undergraduate sections to be taught by faculty members

would be 5.5 times 6, or 33.
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Recall that the undergraduate teaching activities A7 and A8 would

require 52.86 and 30.83 sections of faculty time respectively. The model

clearly requires us to use Activity A8 exclusively, or nearly so, with

half of the total teaching time supplied by teaching assistants.

We must use at least 30.83 sections of faculty time in undergraduate

teaching. If Activity Al2 were used exclusively, we would have only 22

units available at the undergraduate level, so we will evidently have to rely

largely on Activity All, which can supply as many as 33.

Tentatively, then, we can decide to use Activity 8 exclusively for

the 1850 student-courses of undergraduate teaching. This requires 30.83

sections of faculty time.

If we supply these 30.83 sections exclusively with Activity All, we

30.83
require

6
5.4 units of this activity.

Activity All at the level of 5.4 units provides
5.14- = 1.71 man years
3

of faculty research time. As it seems clear that faculty time is a

scarce resource, we may decide tentatively to use Activity Al exclusively in

our research program--1.71 units of it. At $22,250 per unit this would

use up $38,048 of the $40,000 available for research.

At this point we have 0.36 man years of faculty time unassigned and

have done nothing at all about graduate teaching, though cur tentative

research program calls for 3(1.71) = 5.13 (or 5.14) research assistants.

We must recall that 5.14 units of Activity All provides 2(5.14) or

10.28 sections of faculty time for graduate teaching. Each M.S. degree

requires 0.4167 sections of faculty time in course work and 0.4615 in

thesis supervision, or 0.8782 in all. With 10.28 sections we can accommodate

:.: :;L:
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10.28
11.71 M.S. degrees per year.

0.8782

How does this estimate square with the following facts?

a. In choosing Activity A8 for undergraduate teaching, we expressed a

need for 30.83 sections of help from teaching assistants at 5 sections pc,7

.
part-time assistant per year, or

305 83
= 6.16 teaching assistants.

b. In choosing Activity 1 for research, we expressed a need for 5.14 re-

search assistants.

Thus, we require 6.16 plus 5.14 or 11.30 assistants for these two

activities. As each one spends two years on the M.S. prot 7am, this group

11.1G
would lead to ------- = 5.65 M.S. degrees a year.

2

c. Activity A4 provides M.S. training for students not supported on

university funds, but Row 13 restricts their number to not more than two

M.S. degrees a year.

Hence, Activities A4, A5 and A6 combined could amount to not more than

7.65 M.S. degrees under our first round of decisions on activity levels. So,

we appear to need only 7.65 (0.8782) or 6.72 sections of faculty time for

graduate teaching 2f. M.S. candidates in 122.2.art.L._nent A instead of the 10.28

secidons made available by 5.14 units of Activity All.
11/

At this stage we will have arrived at the following value of Department

A's objective function:

Research: 131 units of Activity Al times 5.00 points per unit = 8.55 points--------
11.48 points

M.S. degrees: 7.65 degrees times 1.50 points per degree = -
20.03 points

6. Taking. a second look. We probably have not yet reached the maximum

possible value of the objective function, for the following reasons:

(I) We have $40,000 - $38,048 = $1,952 of research funds unused;

(2) We have 0.36 man years of faculty time unallocated, which could evi-

11/ The solution of the college model (see Table 15) indicates that 8.18 sections
are needed for teaching graduate courses and 3.32 sections for thesis super-
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dently go into full-tine research; and

(3) With 5.14 units of Activity All, we have a little more

capacity for graduate teaching than we need (for M.S. candidates in

Department A only).

Evidently we could at least accomplish a little more research

with our remaining resources.

So far we have made no allowance for the three restrictions on

Department A's activities which are to be derived from the interaction

between the dean and all three department chairmen (of Departments

A, B and C).

Department A's teaching budget must evidently include the

following:

Faculty: 5.14 times $7,400 = $ 38,036

Teaching assistants: 6.167 times $2,800 =

Total: $ 55,303

We cannot determine the amount of service teaching required from

Department A by the other departments, of course, without going through

an approximate analysis of the models for those departments and ul-

timately for the college as a whole.

It will be worthwhile to compare the final results for,Department A

as part of the complete system with our preliminary common sense results:

.11111116.

11/ (continued)

vision, a total of 11.50 sections. But note
Department A to teach 80 student courses, or
graduate students from other colleges and
service courses to some graduate students in

-74-
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Activity
No.

Activity Level in
Preliminary
Analysis

Final Results of CollegalnIkla
Activity
Levels

"Mr.ao.~~111.0

Objective
Function
Weights

Contribution to
Value of Ob-

jective Function
6111111111 r.se

Al 1.71 to 2.07 1.47 5.00 7.35

A2 0 0.50 3.75 1.88

A3 0 0 2.75

A7 0 0 0

A8 61.67. 0

A4 2.00 1.66 1.50 2.49

A5 2.57 2.45 1.50 3.67

A6 3.08 3.08 1.50 4.62

A9 Not comparable 8.18 0

3.53 3.32 0

All 5.14 4.83 0

Al2 0 0.46 0

Al3 0 to 0.36 0.21 0

Total value of objective function: 20.01

Apparently, the college-level restrictions we ignored in our pre-

liminary treatment of Department A approximately offset the gains

we should have made by using up our remaining $1,948 of research budget

and 0.36 man years of faculty time in the absence of college-level re-

strictions and interactions.

7. Meaning of the "shadow kriscle in the final solutrIon. In

general, the shadow-price associated with any limited resouce is the

amount by which the value of the objective function could be increased,

directly and/or indirectly, if we had one more unit of that resource.

The shadow prices associated with the restrichons in the re-

spective rows of Table 15 for Department A (in the final results) are

as follows:

Me2gtr44,,bils.,,,uzikA
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Restriction Contained Shadow Unit in Which Re-
in Row Number Price striction is Stated

4 0.491 Number of research assistants

5 2.991 Man years of faculty time

6 0.178 $1,000 of research funds

7 0.037

9 1.423 One section of faculty teaching time

11 0.810

1* 0.059

2* 0.084

8 0.219

13 0 Restriction not effective

10 1.423 One section of faculty teaching time

3* 1.446 $1,000 of teaching funds

12 1.037 One man year of faculty time

Resources allocated to Department A as a result of optional quota solution

We will not try to unravel the meaning of all the shadow

prices, but will interpret a few.

a. Rows, 4, 5 and 6 as restrictions affect the value of the ob-

jective function through whichever research activity would be expanded

if these restrtctions were relaxed by one unit.

In this particular case, all three restrictions are limiting upon

the expansLon of Activity A2. A unit of Activity A2 requires one research

assistant, one man year of faculty time, and $1,500 of current expense

funds and its objective function weight is 3.75 points. As Activity A2

is a linear homogeneous production function, a doubling of the amount

of every input will cause a doubling of the output.
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We must note that the Row 6 restriction is in $1,000 units,

whereas $1,500 is required for each unit of Activity A2. Hence, the

Row 6 shadow price of 0.178 per $1,000 is better interpreted as tL267

per $1,500. We have, then, dhe following:

Row 4: Shadow pricerer research assistant:

Row 5: Shadow price per faculty man year:

Row 6: Shadow price per $1,500 current expense
funds:

Points:

0.491

'2.991

0.267

Sum of the three shadow prices: 3.749

Apart from rounding errors, this exhibit makes it perfectly

clear that the three restrictions are preventing an expansion in

Activity A2, which would increase the objective function by 3.75 points

per unit of that activity.

The other shadow prices are not this transparent. Certain re-

lationships, however, suggest the nature of the mechanisms at work:

b. The shadow prices for Row 9 and Row 10 are identical. Their

identity implies that the marginal value products of the last unit of

faculty time in the undergraduate and graduate teaching programs are

equal. The size of the shadow prices, 1.423 points per section of

faculty teaching time, suggests that a good part of the effect may

come through an increase in M.S. degrees produced by Activity A4, as

0.8762 sections of faculty time in graduate teaching and thesis

supervision combined are sufficient to permit an additional M.S. degree,

valued at 1.50 points. One section would permit an increase in the

objective function of 1.708 points through Activity,/ Offsets probably
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come through the, fact that each M.S. degree awarded by Department A

requires three service courses from Department B at an "opportunity

cost" of 0.084 points per course (the shadow price corresponding to

Row 2). The net result of these two effects would be 1.708 - 3(0.084) =

1.708 - 0.252 = 1.456. Other, more obscure, effects would acount for

the difference between 1.456 and 1.423.

c. It may be noted that ehe shadow prices associated with

Rows 1 and 8; namely 0.059 and 0.219, are in inverse ratio to the

graduate class size of 24 aad the thesis "class" size of 6.5. Thus,

0.059 6.5

1.424
1.416 1

0.219 24
except for rounding errors. In Row 1,

1

1
an additional graduate student-course would require

24

0.04167 sections' worth of faculty time, If used to increase M.S.

degree output in Activity A4, the objective function would be increased

by 0.0712 points (1.708 times 0.04167). The service course demand on

Department B would draw this down by 0.252 times 0.04167 or 0.0105

points, for a net effect of about 0.0607 poiuts, very close to the

0 059 of the optimal solution.

We may note also that, in Table 22 of Appendix 3, the shadow

prices associated with the teaching budget restriction are the same

(1.446) in all three departments. Those associated with graduate in-

struction in the subject matter of Department A are the sane (0.059) in

all three departments; and those associated with graduate teaching

in the subject matter of Department B are the same (0.084) in two depart-

ments, A and B. (Graduate students in Department C do not take courses

in Department B.)
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Tne identical shadow prices for a given college-level resource

in the two or three departments sharing it indicate that the marginal

value products of that resource in its alternative uses have been

equalized, a requirement for optimal efficiency as measured by the

college-level objective function.

We will not carry the interpretations further. Our main

purpose has been to show that fairly complicated programming models can

be broken down into smaller components; their mechanisms can be

approximately elucidated, and their results monitored at least roughly

by direct reasoning. In a real application of the Department A (and

college) model, the dean and the department chairmen should each have

a good deal of intuitive judgment and experience to aid them in

interpreting the results of the computations.
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Appendix 1

A Model for Allocating a Given Faculty
among Alternative Teaching and F -arch Assignments

The model can be defined in terms of (1) a set of constraints

vhich must be satisfied and (2) an objective functioa the value of

which is to be maximized subject to the constraints. We assume that

commitments are expressed in terms of units such as "teaching a three

credit-hour course for one quarter," and that the amount of time df

each faculty member which can be allocated to satisfy the commitments

is measured in the same units. Thus, if the ith faculty member were

responsible for teaching three three-credit hour courses each quarter,

or nine such courses for the academic year as a whole, a
i

= 9. Sim-

ilarly, if the jth commitment consists of offering two independent

sections of a specified three-hour course in each of three quarters,

b. = 6. If the ith faculty member is assigned to teach all six of

theseofferingsathejOdourse,whavex..=6, and the ith faculty
1J

member is still available to teach throe other courses, presumably one

in each quarter.

Suppose we have a department with n faculty members and m differ-

ent sorts of commitments to fulfill. The constraints faced by this

department can be written as:

(1)
m
E x . a ,

j=1 ij

e ,

-83 -
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(2)

(3)

E = b. ,

i=1 I)

i = 1, 2

j = 1, 2, ..., m

=1,

The type (1) inequalities insure that the total of the alloca-

tions of each faculty member's time does not exceed the amount avail-

able for such allocation.

The type (2) equalities insure that all of the commitments are

The type (3) inequalities preclude negative assignments (e.g.,

assigning some faculty member to teach a negative number of sections

of some course). A "negative assignment" makes no sense in this con-

text and would be avoided on pragmatic grounds if the problem were

being solved by hand by someone who knew what the numbers signified.

If the problem is programmed for a computer, however, the context is

lost and the restrictions that x.. 0 for all i and j must be ex-

plicitly included in the program.

The x
ij

represent the amount of the ith faculty member's time

allocated to the jth commitment. The at's indicate the number of units

of the ith faculty member's time which is available to the department.

The b.'s indicate the number of units of faculty time required by the

jth commitment.

IfEa<Ebno feasible solution exists, i.e., the depart-
i=1 t j=1

ment is either overcommitted or understaffed.
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If E a. E b. feasible solutions exist. If E a >
3=1 1 j=1 3, i=1

,

E b., the department is overstaffed or undercommitted. If E a
j=1 J 1=1 i

E 11, there is a balance between staff and commitments. In that casej=1

the constraints have the same form as the constraints of the so-called

"transportation model" and the model can be solved by any of themethods

applicable for the solution of such models.-
1/

A. The Ojective Function

Nonlinear objective functions may be reasonable in some cases

but linear objective functions are usually more desirable for this

model. If the objective function is linear and the at's and ba's are

all integers the solution vector will, under most methods of solving

the model, be linear. A linear objective function could be written as

n m
E E c.. x
i=1 j=1 1.1 ij

1/ The "transportation model" specifies that there are ai units of a
product at the ith shipping point (i = 1, 2, n) and that b.
units of the product are needed at the jth destination (j = 1, J2,

m); also

a = ;b. .

i=1 I j=1 J

Given the transportation cost, cij, from each of the n shipping
points to each of the m destinations, the problem is to allocate
the supply at each shipping point to a destination or destinations
such a way that (1) all destination requirements are satisfied and
(2) the total transportation cost is minimized; that is,

n mE Ec x
1=1 j=1 ij ij

is a minimum, where xi. is the number of units of the product
transported from shipping point i to destination j.
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whexe c.. is a measure of the value per unit resulting when, for ex-
].)

ample, Co%rse j is taught by Faculty Member i and xij is the number of

units of his time assigned to Course j.



Appendix 2

Models for Computing Optimal Decisions
over a Sequence of Years: Recursive Programming

and Dynamic Programming

We will outline a recursive programming model in some detail

and add briefer comments about a dynamic programming model.

A. Recursive PrograimninK Models

(4) max E c x
i=l it it

subject to

(5) (1 - 0)xj,t_i xi,t 5 (1 + ,

(6)

i a 1, 2, 111

in _ m
E a x 5 (1 4-0') E a,.x _ j 1, 2, ..., k .

i=1 iJ 17t i=1 13 i,t L

The objective function weights, the cit's, are usually dependent

on past net prices. In many cases they are set equal to last year's

net prices. (The "net prices" for year t are equal to year t's out-

put price per unit minus the cost of the resources required to pro-

duce one unit of output.)

The type (5) constraints insure that the activity levels chosen

in year t do not differ too drastically from the activity levels in

year t-l. The 0 's and 's (both of which are greater than zero and

usually less than one) are the "flexibility coefficients." The 01. and
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"AWN,

t the.15
i
associated with any activity i do not have to be equa.. For

example, we could have

(5.1) (1 - 0.10)xi.t.1 xi.t 5 (1 + 0.20)xi.t.1

signifying that activity i in year t could not fall more than 10 per-

cent, but could rise as much as 20 percent, from its level in year t-1.

The type (6) constraints limit the increase over last year's

levelsintheuseacertainresources.Theor.'s are "flexibility

coefficients" for these resources. Examples might be various kinds of

coliege building space or legislative appropriations for specified pro-

grams.

In the model described by expressions (4), (5) and (6), m equals

the number of activities, K equals the number of resource constraints,

and aii indicates the amount of resource j required to produce one

unit of output.

The model used in Section III, pages 45-50 of this report could

be written es:

2
(7) maxLc x -Ed.(x -x )

i=1 it it i=1 it i,t-1

subject to

n m

i=1 .1.j1 it j,t+1-1 5i1 xi,t-1+1(8) Ea.x b

-88-
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%W.

(9) xit 4 0

where
n K

E a V. -P
1=1 j=1 iji j,t-1 i

(10) c = E a V.
it j=1 ijl j,t-1 n K

Le-11EEaV

a . V

The type (8) constraints are resource constraints which'insure

that the decisions made in year t do not require more resources than

will be available in year t and future years. Ordinarily, the con-

straints corresponding to future years will not be needed (i.e., the

restrictions corresponding to 1 = 2, 3, ..., n will not be needed).

/n the present model, m equals the number of activities, K equals

the number of resources for which constraints are included, and n

equals the number of periods required by the most lengthy production

process. Further, aij1 indicates the amount of resource j required

during the lth period of the production process in order to produce

one unit of output i; V
j,t-1

is the "shadow price" obtained in the

t-lth year for the jth resource; and di is the weight associated with

deviations in the level of activity i ior year t from the level of

activity i in year t-1.

The numerical recursive model actually used is as follows:

89-



fr

,
0.2(x2t-

"2t
(11) max cltx1t + c2tx2t - 0.2(x-t-

-1)
2

1 xlt-11

2

subject to

(12)

(13)

17.5x
1,t

-
x

-
4t

x5t

x4t + 0.6x5t 245x6t

5

140x-.
/t

5

-17.5x1.1

17 5(

(14) -175x
3t

+ 0.4x5t
5 0

(15) 9x
2t

-18x
6t

- 72x
7t

5 -12(x )
2,t-1

(16) eiPX
2t

X
3t 5 x2,t-1

(17) X
6t

4- X
7t

A 6

(18) x
3t

1 2

(19) x
lt

5 30

(20) x
2t

A 7

(21) xit 0 i = 1, 2, 411.0, 7

x
lt

number of freshman students admitted in year t.

2t
number of graduate students admittcl in year t.

=number of teaching assistant employed in year t.x3t

x
4t

number of undergraduate.sections taught solely

by faculty members in year t.

-90-
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x
5t

= number of undergraduate sections tatight partly by

graduate students in year t.

= effective number of faculty members assigned to

teach seven sections oi undergraduate courses and

one section of graduate courses per faculty member

per year in year t.

x
7t

= effective number of faculty members assigned to

teach four undergraduate sections and four graduate

sections per faculty member per year in year t.

Constraint (12) insures that all freshman and sophomores are

taught the required number of courses.

Constraint (13) insures that juniors and seniors receive the re-

quired amount of instruction.

Constraint (14) insures that the amount of graduate assistant

teaching required does not exceed the amount available.

Constraint (15) insures that graduate students receive the re-

quired amount of instruction.

Constraint (16) insures that the number of teaching assistants in

year t does not exceed the number of graduate students.

Constraint (17) insures that the number of faculty members allo-

cated does not exceed the number available.

Constraint (18) insures that the number of gradflate assistants

does not exceed the number allowed by the budget.
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Constraint (19) insures that the number of freshman admitted

does not exceed the number seeking admission.

Constraint (20) insures that the number of new graduate students

admitted does not exceed the number seeking admission.

Constraint (21) insures that numbers of persons CKle X
2t,

x,
3t'

x
6t'

and x
7t

) and of sections (x
4t

and x
St

) in each category will be

non-hegative--i.e., positive or zero.

Dynamic glosramilltaa Model

The model used in computing the admission figures in Table'12,

page 52 of the text is as follows:

(22) max E (c xit + c2tx2t)

subject to

(23) x
1,t-1

+ x
lt

x
3

+ x
4t

(24) x
1,t-3

+ x
1,t-2

+ 0.6x
31

+ x
4

+ x
5t

84

(25) 4x
2,t-1

+ 3x - 3x
5

36
2t t

(26)
xlt

(27) x
2t

(28) 21x
1,t-3

(29) x
1,t-2

22
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(30) x
1,t-2

23

(31) x
2,t-1

7

(32) xit 4 o, i = 1, 2, 3, 4 and 5

Constraint (23) insures that all freshmen and sophomore students

are taught the required number of courses.

Constraint (24) insures that juniors and senior receive the re-

quired amount of instruction.

Constraint (25) insures that graduate student!' receive the rer

quired amount of instruction.

Table 16'shows the cmplete model in matrix equation form, vith

solutions for the activity levels, the shadow prices, and the objective

function. Essentially the same information was presented in Table 13

of the test in a more expository form.

The concentration of blocks of elements on the diagonal of the

activity matrix with additional elements below the diagonal la char-

acteristic of dynamic programming modela.
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Appendix 3

A TWo-Level Decision Model; Interaction between
Dean and Department Chairmen in Planning Resource Allocation

Under a two-level decision-making scheme each department may be

faced wlth a problem of the form (for the ith department):

(33) max E c . x
j=1 iJ ij

subject to

m
i

(34) E a b
j=1 iJK
m.
1

(35) dijixij

(36) xij ? 0 .

K=1,2

1 = 19 29 0.9 t

The c
ij

's are objective function weights, the x
ij

's are the activity

levels !or activities of the ith department, the a
ijK

's and d
ijl

's

are technical coefOrients which indicate the amounts of resources K

and I used when the jth activity (of the ith department) is operated

at the unit level. Further, t equals the number of different resources

allocated by the college dean, si equals the number of constraints

faced by department i with respect to resources which are specialized

to it and are not useable by other departments, and mi equals the num-

ber of acZivities available to department i.
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Constraints (34) are constraints on resources (Dr outputs) used

(Dr produced) only by the ith department.

Constraints (35) are constraints on resources (or outputs) which

could be used (or produced) by other departments and which are alloca-

ted by the college dean.

Constraints (36) reflect the fact that negative activity levels

ale not pormLtted.

The problem faced by the college dean has the form:

n
m
i

(37) maxEEcx
i=/ j=1 iJ ij

subject to

(38) Eu b
il 1 '

1 = 1 , 2, 4,4411t

and subject to restrictions (34), (35) and (36) being satisfied for

all departments.

Here, n equals the number of departments in the college, uil in-

dicates the amount of the lth resource which ts allocated to the ith

department, and bl indicates the amount of the lth resource which the

college dean has available for allocation.

The constraints (38) insure that the totals of the allocations

made by the college dean do not exceed the total amounts available.

The decision process that could be used to obtain an optimum set

of quotas consists of several phases each of which can be described
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by describing the Nth phase. During the Nth phase the college dean

1/
solves a problem of the formt

(39) ZN = min [ b V + ;! w ]
1=11 1 i=1 i

subject to

t v
(40) E

11
+ wi ri

= il

(41) V1 ?. 0 .

i = 1 2, n

K = 0, 1, 2, N-1

I. = 1, 2, ill t

The solution values are designated as Vi, 1 = 1, 2, t, and

N
= 1, 2, n. The V

I

1
s are the college dean's current estimates

of the shadow prices (marginal values) of tt,e resources which he allo-

N
cates. The w

I

i
s are his current estimates of those resources (and out-

put requirements) which can only be used (or produced)by the individual

departments.

He reports the VN's and wN's to the departments. They solve
1

problems which (for the ith department) have the form:

mi

(42) = max [jF.1 clixij -

subject to constraints (34), (35) and (36). If ZNi is greater than

N N
zero the x

1

ij
s and u

1

s are set equal to the solution values of the

.11111111.

1/ The Odal of this problem is ordinarily easier to solve and can be
used to obtain the solution to (39) through (41).
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1

m
i

x s and u 's They also then compute r
N
by setting it equal to E1

ij
J=1

N
and report the values of the ui11 s and of rN to the college dean.

If Z is equal to zero the ith department reports only this fact to

the college dean.

In order to initiate this process it is necessary to know

initially (at the beginning of phase I) some feasible values for the

o 1 of
u s and r

i
s: Ordinarily this information would be known by the

college dean or could be obtained by modifying plans (allocations) for

previous periods. If these values cannot be supplied by the college

dean the decision-making process can be modified for as many phases as

are required to obtain a feasible solution. The details of this mod-

ification can be found in NtCamley (15.9 Pp. 106-107). Essentially

the modification amounts, for the college dean's part of the Nth phase,

tO

t n
minimizing 1.11.1 b V1 + E wiJ

subject to

E uK V + w k 0
1=1 9

= 1, 29

111 29

1=1,2

9 N4.1

The departments react as before except that Z
i

an max E u J Wi
1m1 11

subject to constraints (34), (35) and (36).
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The decision process continues until at the end of some phase,

say the Mth, 4 is equal to zero for all relevant i. The college dean

would then solve a problem of the form:

n M-1
(43) Z = maxi. E r

v v,
E 7 X7.1

i=1 K=1 4 4

subject to

n M-1 w
(44) E E le" b

i=1 K=1 i 1
t

M-1
(45) E X

K
= 1 . 1 a 19 29 0009 n

K=1 i

K
(46) X k 0

'
i = lp 2, ...n,

i

(This, of course, the dual of the Mth phase version of the problem de-

fined by (39) through (41) and therefore the solution would already be

known to him.) Designate by X
i

s the values of the X
K1

s which solve

(43) through (46). An optimum set of quotas could then be obtained by

setting

M"1 K KU. =E u X
11

for i = 1, 2, n

and 1 = 1, 2, ..., t

The procedure described above must be modified if unbounded solu-

K
tions (Zi co) are obtained by any of the departments at any stage.

This modification is described in Dantzig ( 7 , pp. 453-454).
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(4,
,

A. Tabular Presentations of phe Model and Its Solution

Tables 17, 18 and 19 present the models for Departments A, B and

C respectively. The first two or three rows in each model represent

the college-level resources for which optimal interdepartmental silo-

cations are to be determined.

In the Department A model, the xA 's have the following meanings:

XA1P xA2
and x

A3
are the activity levels which correspond to

the research activities.

the number of M.S. degrees per year awarded to students

providing their own support.

the'number of M.S. degrees per year awarded to student .

who obtain financial support by working as reaearch

assistants.

the number of M.S. degrees per year awarded to student*

who obtain financial support by working as teaching

x
A4

xA5
goal&

x
A6

=

assistants.

x
A7

the number of undergraduate sections per year taught

solely by faculty members.

x
A8

the number of undergraduate sections-per year taught

jointly by faculty members and graduate teaching

assistants.

A9 the number of graduate sections taught per year.
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v

AlO

^70

= the number of units (section equivalents) of faculty

time devoted to thesis supervision,

x
All'

x
Al2

and x
413 are the activity levels for the various

types of faculty time allocations among research, grad-

uate teaching and undergraduate teaching.

n the Department B model, the x
BJ

's have the following mean-

ings:

and
n4 are the activity levels for the research activities.

x
B3 the number of 1LS. degrees per year awarded to students

B4

providing their own support.

the number of M.S. degrees per year awarded to stu-

dents who are also teaching assistants.

NV *B6 and xwi .are the numbers of each of the various types

of sections taught per year.

the number of units (section equivalents) of facultyx
B8

time devoted to thesis supervision.

X
89

X
B10

arid x
Bll are the activity levels for the faculty time'

allocation activities (allocations among research,

graduate teaching and undergraduate teaching).

IntheDepartmeraCmodel,thexCJ 's have the following umlanings:

x
l'

x
c2

and x
c3 are the activity levels for the researchc

activities.

e vr,Ut
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to7.17r7 7.)x,.0,45.TW077,-wrr.:9,7.77,"

x
c4 the number of M.S. degrees per year awarded to students

x
c5

providing their own support.

the number of M.S. degrees per year awaided to students

who are also research aasistants.

the number of M.S. degrees per year awarded to students

who are also teaching assistants.

xc7, xc8 and xc9 are the numbers of each of the various types

of sections taught.

the number of units (section equivalents) of faculty

time,per year devoted to thesis supervision.

x 11, x
c
12 and x

c13 are the activity levels for the faculty

time allocation activities (allocaticas among research,

graduate teaching and undergraduate teaching).

Table 20 combines the models for all three departments. The top

eight rows involve the three resources for which optimal allocations

among the three departments are to be computed by the two-level decision

process. The college lean faces one major restriction, U3, a total

teaching budget of $220,000 assigned to him by the univerlity President.

The other two restrictions, U1 and U2, are in a sense self-imposed by

the college dean, who uses their suballocations among the departments

as tools for balancing up or equalizing the marfp=inal value products

of the graduate teaching programs in the three depa7:tments.

Table 21 displays the values of key magnitudes (objective funcr

tions, shadow prices and tentative quotas) at successive phases of the

- 108 -



T
 
b

C
o
m
p
l
e
t
e
 
M
o
d
e
l
 
o
f
 
D
e
p
a
r
t
m
e
n
t
s
 
A
,
 
B
 
a
n
d
 
C
 
w
i
t
h
 
D
e
p
a
r
t
m
e
n
t
-
L
e
v
e
l

a
n
d
 
C
o
l
l
e
g
e
-
L
e
v
e
l
 
R
e
s
t
r
i
c
t
i
o
n
s

4 
01

1

D
e
p
a
r
t
m
e
n
t
 
A
 
A
c
t
i
v
i
t
i
e
s
:

4
b
5
b

6
b
7
b

8
b
9
b

1
0
b

l
l
b

1
2
b

R
o
w

5
.
0
0

3
.
7
5

2
.
7
5

1
.
5
0

1
.
5
0

1
.
5
0

(
c
A
j
'
s
)

N
u
m
b
e
r

A
l

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1
0

A
l
l

A
l
2

A
1
3

A
l
(
U
1
)

B
l
(
U
1
)

C
l
(
U
1
)

A
2
(
U
2
)

B
2
(
U
2
)

A
3
(
U
3
)

B
3
(
U
3
)

C
3
(
U
3
)

4
a

3
1

-
2

5
a

1
1

1

6
a

3
0
0
0

1
5
0
0

7
5
0

5
5
0
0

3
6
0
0

3
6
0
0

1
1
,
0
0
0

0
,
4
7
a

-
3
5

-
3
0

8
a

3
3

3
-
6
.
5

9
a

1
0
.
5

-
6

-
4

1
0
a

1
1

-
2

-
4

l
l
a

-
1
0

0
.
5

1
2
a

1
3
a

1
.

1
0

1
0

1
0

3
3

-

-
2
4

-

5
6
0
0

7
4
0
0

7
4
0
0

-
1
/
3

-
1
/
3

-
1

1

3
c

4
c
5
c

0
6
c

I
r
i
g

87
c c
9
c

i4 4.
1

1
0
c

C
ie

l
l
c

1
2
c

1
3
c

-



T
a
b
C
e
2
0
.

(
C
o
n
t
.
)

R
o
w

N
u
m
b
e
r

2
.
1
0

B
I

2
.
4
0

B
2

1
.
7
5

B
3

1
.
7
5

B
4

D
e
p
a
r
t
m
e
n
t

B
5

B
 
A
c
t
i
v
i
t
i
e
s
:

(
c
B
i
l
s
)

B
9

B
1
0

B
1
1

B
6

B
7

E
8

/
M
M
.
)

B
1
(
U
1
)

3

C
l
(
U
1
)

A
2
(
U
2
)

B
2
(
U
2
)

1
0

10
-
1
5

A
3
(
U
3
)

B
3
(
U
3
)

5
2
0
0

8
5
0
0

8
5
0
0

C
3
(
U
3
)

4
a 5
a

6
a

7
a

8
a
9
a

1
0
a

l
l
a

1
2
a

1
3
a

4
b

-

1
1

-
0
,
1
5

-
0
.
1
5

-
1

5
b

1
0
0
0

2
6
0
0

1
5
0
0

1
5
0
0

1
0
,
0
0
0

6
b

-
3
0

-
2
5

7
b

3
3

8
b

1
0
.
6

-
8
.
5

-
6
.
0

9
b

1
-
1
.
5

-
4
.
0

1
0
b

-
1
0

0
.
4

l
l
b

1
1

1
.

1
2
b

1

3
c
4
c

5
c
6
c

7
c

8
c
9
c

1
0
c

1
1
c

1
2
c

1
3
c



T
ab

O
O

.
(C

on
t.)

D
ep

ar
tm

en
t C

 A
ct

iv
iti

es
:

R
ow

5.
40

4.
75

3.
00

2.
00

2.
00

2.
00

(c
ci

's
)

N
um

be
r

C
l

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

A
l(

U
1)

B
1 

(U
1)

C
l(

U
1)

A
2(

U
2)

B
2(

U
2)

-

A
3(

U
3)

B
3(

U
3)

C
3(

U
3)

 1

4
4

4

-5
50

0
90

00
90

00

4a 5a 6a 7a 8a 9a 1.
0a I 
a

12
a

13
a

4b 5b 6b 7b 80 9b 10
b

llb 12
b 3c

3
2

-2
4c

1
1

1
-0

.2
5

-0
.2

5
-1

5c
30

00
17

50
50

0
-5

40
0

30
00

30
00

12
,0

00
6c

-4
0

-3
5

7c
9

9
-1

8.

8c
3

3
3

-7
.5

9c
1

0.
7

-7
-5

10
c

1
-2

-4
lic

-1
2

0.
3

12
c

`*
13

c



D
e
p
a
r
t
m
e
n
t

C

I
.D

e
p
a
r
t
m
e
n
t

BID
e
p
a
r
t
m
e
n
t

AIC
o
l
l
e
g
e
-
L
e
v
e
l

R
e
s
t
r
i
c
t
i
o
n
s

1

R
e
s
t
r
i
c
t
i
o
n
s

1

R
e
s
t
r
i
c
t
i
o
n
s

1R
e
s
t
r
i
c
t
i
o
n
s

1

10.41-0

l
a
l

h
ah
a

h
aP
ah
a

1.-

1-W
W
W
N
N
3
W
h
a
h
a

L
O

N
.
3

/0M
)O
D

20
%

%
A

P.toIN
3i-o.003...1

chviP/L
I1

.

I
-
4

0.
0c
o

.
1

0
%

L
A

P10
%
.

.
0
%

4
4

,
z.
0
%

%
.

O
nononnonon

croscrcrtruicrcrcrim
idoldlurocoldtdid

I

0'0000000

It
o

L
o

t
r
a

h
a

h
a1
-
0

%
.
.
.
0
0
%
.
0
"
*
.
i
.
0
"
.
.
.
0
0
N
.
0
.
.
.
.
.
0
"
.
.
.
0
4
.
.
.
.
0

1

1
1

I

IAIIA

IL
A

IIA

IIM
IA

H
A

IIA

IIAIAIIA

IIIA

IL
A

IIA

IIAIV
t

O
A

'IAIAIAIIIA

IIA

IIAIIA

IIA

IIA

inIIA

H
A

IIA

IAdAIAIAIIA

IAIAIIA I

t.3vt i4Iivcl. 6ts4

II-,

0
s4
'

I
c
s
g
e
_
g
o

n
u
a
>

Io

,O
0
0
0
n
)
m
0
0
0

c
o
o

0V001"

0000co000

-4

03wL
nN
o

wIC
A
I

4
,
0

E
l

N
,

N
3

h
a

h
a

h
a

0IJIh
a

L
A

cI
T
=

%
.
nkin

0krt

0I 000

00i,6L
n

00

111

III

IIIu.o0

Ii1

I/I

0
r3

00
rt



Table 21. Two-Level Decision Model: Values of Key Magnitudes (Objective Functions,
Shadow Prices and Tentative Quotas) at Successive Phases of the Com-
munication Process betwun_42A411m41,1LeasjautEulgentt,Aaji and C

Variable
11111111.IMMIIMIMPIr

0 1

V
K
1

V
2

l000V
K
3

WK
A

WK

WC

Z:
K
lower est.

a

Z:Kupper est.

T
A

12.70

UK
l

-166.62
A

UK
2

16.33
A

UK 56.63
A3

ZK
A

r
K

10,48
B

U
K

14.7
B1
K

U
B2

-149.36

UK 92 Q
B3

ZK
B

0

12.70

10.48

1.07

24.25

166.72

51.88

285.27

85.58

174.20

39.18

80,64

133.0

443.32

297.58

70.16

2

0

0

1.12

'50.75

-92.59

-77.85,

25.28

63.65

20.77

-82.21

23.41

55.29

9.57

13.27

16.2

-86.00

88.88

6,29

Phase Number (K)

3 4 5 6 7

COLLEGE DEAN

0.10 .04 .06 .05 .06

0, 0.05 .05 .09 .08 .08

0.25 .78 1.53 1,42 1.45

13.33 -20.28 -61.26 -55.10. -56.03

-6.11 -52.73 -116.55 -106.64 -108.96

4.30 -32.41 -86.77 -78.33 -80.48

53.37 57.82 58.21 58.29 58.38.

63.65 59.07 58.60 58.51 58.38

DEPARTMENT A

17.75 20.75 17.38 20.38

-194.34 -152.18 -133.59 -91 44

17.32 23.32 16.10 22.10

57.97 57.97 55.29 55.29

7.29 0.88 0.27 0.22 0

DEPARTMENT B

12.51 13.26 12.32

16.2 16.2 14.59

-196.29 -141.18 -103,08

95.13 92.01 89,22

3.64 0.37 0.12 0 0
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Table 21 ( continued )
It

Variable 0 1

Phase Number (K)

2 3 4 5 6 7

r
K

UC1

11C2

U
K
C3

ZC

1.07

2.14

0

/0.45

34.20

48.15

0

100.02

33.13

DEPARTMENT C

0 0 0 .0

25.21 25.58

28.43 30.12

0 0

71.90 72.28

22.51 042

a/ The lawest estimate is equal to ZK for Phase K.

b/ The upper estimate for Phase K is given by

min
[IZ K K

+ Z
K K 1)

A B C

1 sh.SK

- 11.4 -
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communication process between the dean and the department chairmen.

Finally, Table 22 displays the activity levels °cuts) and shadow

prices (vij's) resulting from the optimal solution (end of Phase 7)

of the overall college model.

In Table 6, it should be noted that the activity levela
Cititr

xBj and xcj's) are associated with the columns of the corresponding

department models and the shadow prices (vAj, vBj and vcj's) are

associated with the rows. There are 37 columns (activities) in the

three departments and there are 38 rows (shadow prices). The near-

equality of the number of rows and the number of columns is a more or

less coincidental byproduct of our attempt to keep the model small.

We could, for example, have included a very large number of alternative

class sizes in each department model, with each class size constituting

a separate activity. This would have led to perhaps 100 possible

activities (columns) but the number of restrictions (rows) might have

remained at 38. However, not more than 38 activities would have

appeared at nonzero levels in the optimal solution.
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